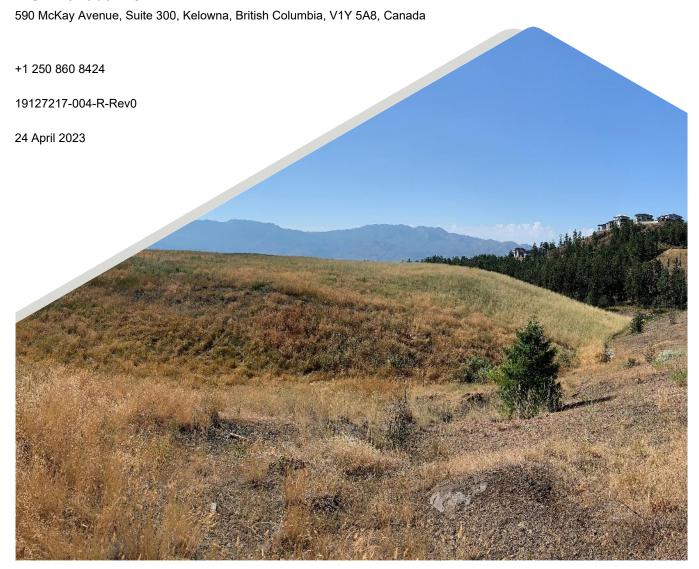


REPORT

2022 Monitoring Report

Westside Landfill, West Kelowna, BC


Submitted to:

Regional District of Central Okanagan

1450 KLO Road Kelowna, BC V1W 3Z7

Submitted by:

WSP Canada Inc.

Distribution List

1 eCopy - Regional District of Central Okanagan

1 eCopy - BC Ministry of Environment and Climate Change Strategy

1 eCopy - WSP Canada Inc.

i

Table of Contents

1.0	INTR	ODUCTION	1
2.0	APPL	ICABLE REGULATORY FRAMEWORK	2
	2.1	BC CSR Water Standards	2
	2.2	Regional Background Groundwater Concentrations	3
3.0	HYDF	ROLOGY AND HYDROGEOLOGY	4
4.0	METH	IODS	5
	4.1	Site Inspection	5
	4.2	Groundwater Monitoring	5
	4.3	Landfill Gas Monitoring	5
	4.4	Groundwater Elevation Data	6
	4.5	Quality Assurance / Quality Control (QA/QC)	6
5.0	RESU	JLTS	7
	5.1	Site Inspection	7
	5.2	Groundwater Quality	9
	5.2.1	Groundwater Monitoring Results Relative to BC CSR DW Standards	9
	5.2.2	Groundwater Results Relative to Historical Data (Trend Analyses)	13
	5.2.2.	Chloride	15
	5.2.2.2	2 Ammonia and Nitrate	15
	5.2.2.3	Iron and Manganese	16
	5.3	Landfill Gas Monitoring	16
	5.3.1	Methane	16
	5.3.2	Other Landfill Gases	19
	5.4	Groundwater Elevations	19
	5.5	Quality Assurance / Quality Control (QA/QC)	21
6.0	DISC	USSION OF GROUNDWATER AND LANDFILL GAS MONITORING AND SAMPLING	21
	6.1	Groundwater Monitoring and Sampling	21
	6.2	Landfill Gas	22

7.0	RECOMMENDATIONS	22
8.0	LIMITATIONS AND USE OF REPORT	23
9.0	CLOSURE	24
TAB	LES	
Table	e 1: BC CSR Drinking Water Exceedances, 2022	12
Table	e 2: Exceedances of Methane Action Levels in 2022, by Location	16
Table	e 3: Exceedances of Methane Action Levels in 2022, by Vapour Well	17
Table	e 4: Median, Maximum, and Minimum Measurements of Other Landfill Gases, 2022	19
FIGU	JRES (IN TEXT)	
Phot	o 1: Damaged perimeter fencing along western property boundary due to fallen tree; facing northeast	8
Phot	o 2: Westside Landfill vegetation cover, facing south	8
Phot	o 3: Indication of vehicular traffic on the southern extent of the Westside Landfill, facing south	9
Figur	e 4: Groundwater Quality Summary, May 2022	10
Figur	re 5: Groundwater Quality Summary, November 2022	11
Figur	re 6: Values of Key Parameters Over Time	14
Figur	re 7: Maximum Methane Levels, by Vapour Well and Year	18
Figur	e 8: Groundwater Elevations, by Well	20

FIGURES (ATTACHED)

Figure 1: Key Plan

Figure 2: Groundwater Monitoring Locations and Inferred Direction of Groundwater Flow

Figure 3: Groundwater Monitoring and Soil Vapour Well Locations

APPENDICES

APPENDIX A

Westside Landfill Operational Certificate Letter

APPENDIX B

Tabulated Results (2022 Groundwater and Soil Gas Monitoring Results and Groundwater Elevations)

APPENDIX C

Laboratory Certificate Analysis (COA) Reports

APPENDIX D

Quality Assurance / Quality Control (QA/QC) Results

1.0 INTRODUCTION

WSP Canada Inc. (WSP; formerly Golder Associates Ltd. [Golder]) was retained by the Regional District of Central Okanagan (RDCO) to provide support services for the 2022 annual monitoring program at the Westside Landfill (the Site), located in West Kelowna, BC (Figure 1). Westside Landfill was operated as a municipal solid waste landfill under Operational Certificate (OC) PR#12217 (Appendix A) issued by British Columbia Ministry of Environment and Climate Change Strategy (ENV¹). Westside Landfill ceased receiving waste in 2010 and was partially covered. A Closure Plan was developed by Golder in 2015 and was accepted by the ENV in September 2017 (ENV letter provided in Appendix A). WSP has been provided with record drawings for the closure works, which included earthworks, drainage works and the placement of topsoil, all of which were completed in 2018 under the supervision of Urban System Ltd. (USL); the USL record drawings were provided in the 2018 Annual Report (Golder 2019). The Site was seeded and fertilized during the first week of November 2018, with a final completion date of 7 November 2018.

Landfill Monitoring Program

The current landfill monitoring program was carried out as initially outlined in OC PR#12217 following recommendations outlined in the Updated Landfill Monitoring Program (Golder 2014b) and the Closure Plan (Golder 2015). The recommendations for changes to the monitoring and inspection plan outlined in the 2015 Closure Plan were formally accepted by ENV in September 2017. An Updated Landfill Monitoring Program (LMP) report was prepared to 1) reflect the landfill gas monitoring wells installed since the 2014 Updated LMP, 2) update the LMP to reflect the vapour wells decommissioned in 2018 and provide recommendations for replacement of the decommissioned vapour wells, and 3) review the required monitoring and sampling requirements following closure activities of the Westside Landfill (Golder 2020). The Updated LMP report was submitted to ENV in 2020 as part of an amendment application for OC PR#12217 (Golder 2020), currently under review by ENV. Modifications to the landfill gas vapour probe network and groundwater sampling program since 2015 and are discussed in Section 4.0.

The annual monitoring program includes groundwater sampling and analysis, groundwater elevation monitoring, landfill gas monitoring, and preparation of an annual landfill inspection report. Similar to previous years, RDCO staff completed the groundwater sampling, groundwater elevation and landfill gas monitoring components of the program in 2022. WSP reviewed results from each landfill gas monitoring event within 24 hours of data collection, as outlined in the Landfill Gas Management Plan (Golder 2013a) and the Closure Plan (Golder 2015) and completed an inspection of the Site in August of 2022. This report summarizes the results of these inspection and monitoring activities and provides recommendations for adjustments to the monitoring program.

¹ ENV is referenced herein in this report, including references to previous nomenclature of Ministry of Environment (MoE)

1

2.0 APPLICABLE REGULATORY FRAMEWORK

The Westside Landfill was initially permitted under PR#12217 in 1997. With the acceptance of the Closure Plan (Golder 2015) by ENV in September 2017 (Appendix A), the monitoring and inspection requirements outlined in that document became effective. As outlined in the Closure Plan, monitoring results are used as part of the assessment of effectiveness of closure works at Westside Landfill, in particular the use of an evapotranspiration cover at this Site. Periodic (annually, at present) inspections by a qualified professional are also part of this assessment of the effectiveness of closure works. If assessment of monitoring data and inspections suggest potential adverse impacts to the environment or risks to human health, then additional works or mitigation measures may be required.

In British Columbia, environmental matters pertaining to contaminated sites generally fall under the jurisdiction of the Ministry of Environment & Climate Change Strategy (ENV), pursuant to the *Environmental Management Act* (EMA, SBC 2003, Chapter 53 assented to 23 October 2003, current to 29 March 2023; BC ENV 1996). The key regulation under the EMA that relates to the assessment and remediation of contaminated sites is the Contaminated Sites Regulation (CSR; BC Reg. 375/96, O.C. 1480/96 and M271/2004, as updated [includes amendments up to BC Reg. 179/2021, updated to 7 July 2021]).

An additional regulation applicable to environmental investigations is the BC Groundwater Protection Regulation (BC Reg. 39/2016, O.C. 113/2016, including amendments up to BC Reg 75/2021, 11 March 2021). This regulation establishes standards to protect groundwater supplies by requiring wells, including environmental boreholes, test pits and monitoring wells, to be adequately constructed, maintained and, at the end of their service, adequately deactivated and ultimately closed. Additional regulations and guidance specific to landfills include Landfill Criteria for Municipal Solid Waste, Second Edition (2016) and the Landfill Gas Management Regulation (current to 30 March 2022).

2.1 BC CSR Water Standards

The CSR provides Generic Numerical Water Standards for the assessment of groundwater quality (CSR Schedule 3.2). The groundwater quality standards are divided into four categories that include standards for the protection of aquatic life (AW), irrigation water (IW), livestock watering (LW), and drinking water (DW). BC ENV *Protocol 21 for Contaminated Sites: Water Use Determination* (ENV 2017) provides guidance for determining applicable groundwater uses at a site, which in turn affect the groundwater standards. The discussion below presents an evaluation of the groundwater uses that apply when determining the numerical standards for groundwater at the Site based on guidance in Protocol 21.

Drinking Water

According to Protocol 21, current and future groundwater use as potential drinking water should be assessed where an aquifer underlies a site (ENV 2017). As outlined in Section 3.0, two aquifers underlie the Site. In addition, there are two former registered wells on the Site and numerous registered wells located within 500 m of the Site. Therefore, the CSR DW standards are applied to evaluate groundwater quality for this monitoring program.

The Stage 8 CSR Amendments restricted the application of the water standards for iron and manganese to sites with specific Schedule 2 activities (ENV 2013). As none of the specific Schedule 2 activities listed in the Stage 8 Amendments are occurring on the Site, the CSR standards for iron and manganese in drinking water do not apply to the Site.

Aquatic Life

Shannon Lake is located approximately 300 m to the east/northeast of the Site; however, previous investigations have ruled out Shannon Lake as a receptor of groundwater from the Site (Golder 2015). As such, the CSR AW standards have not been applied.

Irrigation and Livestock Watering

Based on Protocol 21, irrigation water and livestock watering standards are considered applicable at sites where an aquifer underlies the site and the site is i) used for agricultural purposes, ii) located within a provincial Agricultural Land Reserve (ALR) or iii) if "irrigation or livestock watering wells or surface water intakes are present within a distance of 500 m from the outer extent of a groundwater contamination source" (ENV 2017). The Site is not used for agricultural activities and is not located within the ALR. Based on surrounding land use, provincial water well and water license records, points of diversion, and agricultural land reserve mapping, and in consideration of the groundwater flow direction across the Site, no groundwater wells or surface water intakes were identified for the purpose of livestock watering or irrigation within 100 m upgradient (north-northwest) of the Site and 500 m downgradient (south-southeast) of the Site. Therefore, the CSR IW and LW standards were not considered applicable to groundwater at the Site.

2.2 Regional Background Groundwater Concentrations

ENV Protocol 9 for Contaminated Sites: *Establishing Local Background Concentrations in Groundwater*, which establishes regional background concentrations for select inorganic substances in groundwater for four regions in BC (ENV 2021). Under Protocol 9, groundwater that contains a substance at concentrations above the applicable generic numerical CSR water standard at a site, but below the local background concentration for that substance, would not be considered contaminated under Section 11(3) of the CSR with respect to that substance.

The boundaries of each of the four regions outlined in Protocol 9 are available in iMapBC. Based on these boundaries, a portion of the Site is located within the Thompson Okanagan Region and as such, the background concentrations for the Thompson Okanagan Region are considered applicable to the groundwater quality at BH-3, BH-4, and BH-5. The remaining monitoring wells, BH-1, BH-2, BH-7, and MW99-2 are located just outside the boundary to the north of the mapped Thompson Okanagan Region. As such, analytical groundwater results discussed in this report are compared to the CSR DW standards; analytical results from BH-3, BH-4, and BH-5 were also compared to the background concentrations established in Table 1 of Protocol 9, where applicable.

For cobalt, the local background concentration estimate for cobalt in the Thompson-Okanagan Region in Protocol 9 was applied as well as the interim background value for the province (ENV 2021).

3.0 HYDROLOGY AND HYDROGEOLOGY

The regional direction of groundwater flow is inferred to be towards the south to southeast based on available information and previous reports (Figure 2).

Historical surface ponding at the Site consisted of two small transient surface water bodies (North and South Ponds) located along the northwest side of the landfill, and were first observed during Site visits conducted in early 2013 (Golder 2014a). The surface water was inferred to originate from groundwater seepage into an excavated area located on the west side of the landfill. Remedial works in the pond areas were proposed in the Closure Plan (Golder 2015) and undertaken in 2018. This area was observed during the Site inspection in August 2022, as discussed in Section 5.1.

According to the ENV's BC Water Resources Atlas, two aquifers underlie the Site:

- Aquifer No. 0301 is a sand and gravel aquifer with domestic water uses. It is classified as having a moderate demand, productivity, and vulnerability. It is also locally known as the Shannon Lake Aquifer. The aquifer mapping presented in iMapBC indicates that this aquifer is only present on the southern portion of the landfill.
- Aquifer No. 0305 is a bedrock aquifer with domestic water uses. It is classified as having a moderate demand and vulnerability, and low productivity. The aquifer mapping presented in iMapBC indicates that this aquifer is present underlying the entire landfill.

According to ENV's BC Water Resource Atlas, several wells are present in Aquifers No. 0301 and No. 0305. The majority of the wells are completed in Aquifer 301 and are located east and south of the Site. The wells are reportedly used for private domestic, commercial, and industrial purposes. Generally, the depth to groundwater ranged between 2.1 m to 4.6 m below ground surface (mbgs).

Two registered wells are located within and/or immediately adjacent to the Site (Well Tag Number [WTN] 61675 and 56228).

According to the detailed well report, WTN 61675 corresponds to BH-6 in WSP borehole records. It is located along the western boundary and within the landfill. It was reportedly constructed in 1994 for commercial and industrial use. This well was drilled to a total depth of 12.2 mbgs and terminated in bedrock.

WTN 56228 (known as Dobbin's Well) was located immediately adjacent and outside of the landfill footprint, along the northwestern boundary (Figure 2). It was reportedly constructed in 1986 for private domestic use, terminated in bedrock at a total depth of 54.7 mbgs. The well was disconnected in 2006 due to a pipeline rupture and is no longer accessible. It is inferred that Dobbin's Well is installed within Aquifer 0305.

4.0 METHODS

4.1 Site Inspection

The Westside Landfill is inspected annually by a qualified professional as part of the monitoring program. During the inspection, the Westside Landfill is visually evaluated for potential issues such as erosion, differential settlement, slope failure, the condition of the vegetation on the cover, and safety concerns.

4.2 Groundwater Monitoring

The groundwater sampling program for the Westside Landfill was carried out by RDCO staff in May and November 2022, and depth to groundwater was measured by RDCO staff in January, February, March, April, May, August, November, and December 2022. The monitoring well locations used for water quality and level monitoring are shown in Figure 3.

Groundwater samples collected from the monitoring wells during the 2022 monitoring program were submitted to CARO Analytical Services of Kelowna, BC (CARO) for chemical analyses. As outlined in the Closure Plan (Golder 2015) and the groundwater monitoring requirements based on the ENV OC, the groundwater samples collected from monitoring wells BH-1, BH-2, BH-3, BH-4, BH-5, BH-7, and MW99-2 were analyzed for the following parameters: pH, conductivity, hardness, alkalinity, chloride, sulphate, ammonia nitrogen, nitrate nitrogen and dissolved metals. During the November 2022 sampling event, chemical oxygen demand (COD) and total dissolved solids (TDS) were also included in the sample suite.

MW99-2 has been included in the groundwater quality monitoring program, representative of background conditions (Golder 2017).

4.3 Landfill Gas Monitoring

A landfill gas management plan (LGMP) was developed in consultation with ENV (Golder 2013). Modifications to refine and extend the program were proposed in the Closure Plan (Golder 2015), most of which have been put into action since they are consistent with the program outlined in the LGMP. Additional vapour wells (VP15-01, VP15-02 and VP15-03) were installed in 2015, with two of these (VP15-01 and VP15-02) located near the edge of the area of filling along the eastern boundary to serve as additional "step-out wells" to the existing VP07-02, to better assess methane levels near the property boundary. VP15-03 was located near BH102 to provide additional information on landfill gas composition variation with depth. In 2018, seven vapour wells that were located north of the Site boundary on the north side were removed as part of earthworks being completed on the off-Site property; the wells removed included VP07-11, VP07-12, VP07-13, VP07-17, VP07-18, VP07-19, and VP07-20.

The recommendations included in the LGMP (Golder 2013) and the Closure Plan (Golder 2015) were put into effect as of May 2013. Landfill gas measurements have been measured by RDCO staff since 2016. The results of the monitoring events are submitted to WSP for review and assessment within 24 hours, to better meet the timelines for further action, if needed. In the LGMP (Golder 2013), action levels were set relative to the location of vapour wells, which were classified as *Inside-Boundary* for vapour wells within the landfill boundary that are no closer than 5 m to the landfill boundary, *Near-Boundary* for vapour wells, which are within the landfill boundary and are within 5 m of the landfill boundary, and *Outside-Boundary* for vapour wells that are outside of the landfill boundary. The action level for *Inside-Boundary* vapour wells is 25% Lower Explosive Limit (LEL), while the action

level for the *Near-Boundary* and *Outside-Boundary* vapour wells is 10% LEL. The prescribed action in the case of exceedances at a vapour well is to check the instrument calibration and resample if there was a calibration issue. In cases where there is an associated "step-out" vapour well, which is a vapour well located further from the landfill in a direction approximately perpendicular to the closest landfill boundary, then readings are measured at the step-out well and compared with the associated action level for that monitor. If the step-out readings are less than the associated action level, then no additional action is required. If there is no associated step-out monitor or if level in the step-out monitor exceed the associated action level, then ENV needs to be notified and an action plan developed.

The 2022 landfill gas monitoring program was conducted by RDCO staff. Complete monitoring events were completed in January, February, March, April, May, August, November, and December 2022, and partial sampling events in key locations were completed in June, July, September, and October 2022. The vapour monitoring locations are shown in Figure 3.

4.4 Groundwater Elevation Data

Groundwater depths were measured in January, February, March, April, May, August, November, and December 2022 from MW99-2, MW99-3 and MW99-4, and in May and November 2022 from BH-1, BH-2, BH-3, BH-4, BH-5, and BH-7.

A survey of the vapour and groundwater monitoring locations and elevations was completed by AllTerra Land Surveying Ltd. in January 2015. The elevations of the top of the monitoring wells are used to calculate groundwater elevations from the measured depth to groundwater. The information from this survey was used to adjust historical groundwater elevation data and was incorporated into the assessment of groundwater elevations and flow directions presented in the 2015 Monitoring Report (Golder 2015b), subsequent reports and this (current) report.

4.5 Quality Assurance / Quality Control (QA/QC)

A Quality Assurance/Quality Control (QA/QC) program was developed and implemented for the purpose of obtaining sampling and analytical data that were interpretable, meaningful, and reproducible. This involved using QA/QC measures in both the collection (field) and analysis (laboratory) of samples. A summary of the QA/QC procedures established for the field program and the QA/QC measures implemented by the analytical laboratory is provided in Appendix D.

5.0 RESULTS

The 2022 Site inspection, groundwater quality, landfill gas monitoring, and groundwater level results are discussed in the following sections.

5.1 Site Inspection

The 2022 Site inspection was conducted on 12 August 2022 by Mackenzie Scherer of WSP. No issues of immediate concern were identified during the 2022 Site inspection; however, several integrity issues were noted, including:

- Damage to the fencing by fallen tree along the western property boundary observed during the 2020 and 2021 Site inspections was still present (Photo 1).
- Numerous holes cut into the fencing, primarily along the western and southern property boundaries.
- Damage to the electrical component of the fencing.

We understand from the RDCO that these integrity issues have been captured in a previous compliance report. Additionally, it is noted that following completion of the update to OC PR#12217, which is currently pending, the requirement for fencing surrounding the perimeter of the landfill will no longer be required.

At the time of the Site inspection, the entirety of the landfill was covered in vegetation that did not appear to be stressed with only localized sections of bare earth showing (Photo 2). No visual evidence of erosion, differential settlement, or slope failure were observed. The two surface water bodies (North and South Ponds) located in the northwest portion of the Site did not contain any water during the Site inspection. A localized area of the Landfill, located within the southern extent of the landfill footprint, exhibited indications of vehicular traffic (Photo 3). No indications of storage of equipment were observed on the Landfill. While conducting the Site inspection, two deer were observed grazing on the western slope of the Landfill and one coyote was observed along the northern property boundary. Additionally, burrows were observed in various locations across the landfill, however, no rodents or burrowing animals were directly observed.

Photo 1: Damaged perimeter fencing along western property boundary due to fallen tree; facing northeast.

Photo 2: Westside Landfill vegetation cover, facing south.

Photo 3: Indication of vehicular traffic on the southern extent of the Westside Landfill, facing south.

5.2 Groundwater Quality

RDCO staff collected groundwater samples in May and November 2022 and submitted the samples to CARO for analysis of the parameters outlined in Section 4.2. The analytical results were provided to WSP by RDCO for the preparation of this report. The groundwater analytical results were compiled and compared to the applicable regulatory criteria as described in Section 2.0. The tabulated analytical results are provided in Tables B-1 in Appendix B, while the Certificate of Analysis (COA) reports from CARO are provided in Appendix C.

5.2.1 Groundwater Monitoring Results Relative to BC CSR DW Standards

The groundwater analytical results for dissolved metals, chloride, and nitrate (as N) from May 2022 and November 2022 are provided in Figure 4 and Figure 5, respectively.

To facilitate interpretation, the results are presented for wells located hydraulically upgradient of the landfill, within the landfill footprint, hydraulically downgradient within 50 m of the Site boundary, and hydraulically downgradient more than 50 m from the Site boundary. Parameter concentrations that exceed the applicable CSR DW standard are depicted with solid squares, while parameters concentrations that are below the applicable CSR DW standard are depicted with outlined circles and parameter concentrations with no applicable CSR DW standard are depicted with outlined triangles. The analytes are arranged in ascending order of concentration (approximately) to make interpretation of the figures easier. The concentrations of the parameters included in Figures 4 and 5 vary over a wide range, hence a logarithmic scale is used. For a number of the parameters, the results were reported to be at or below the laboratory reporting limits, which results in the data being plotted effectively as a single point (mercury, for example). Note that in cases where a result was below the laboratory reporting limit, the result was plotted as being equal to the laboratory reporting limit. There is a large variation in manganese and iron values, which is likely due to the fact that they are both much more soluble under reducing conditions than under oxidizing conditions.

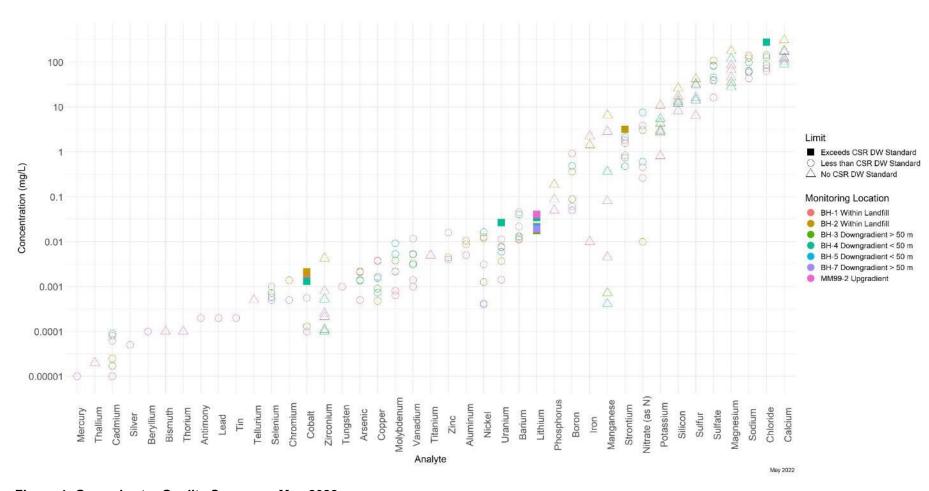


Figure 4: Groundwater Quality Summary, May 2022

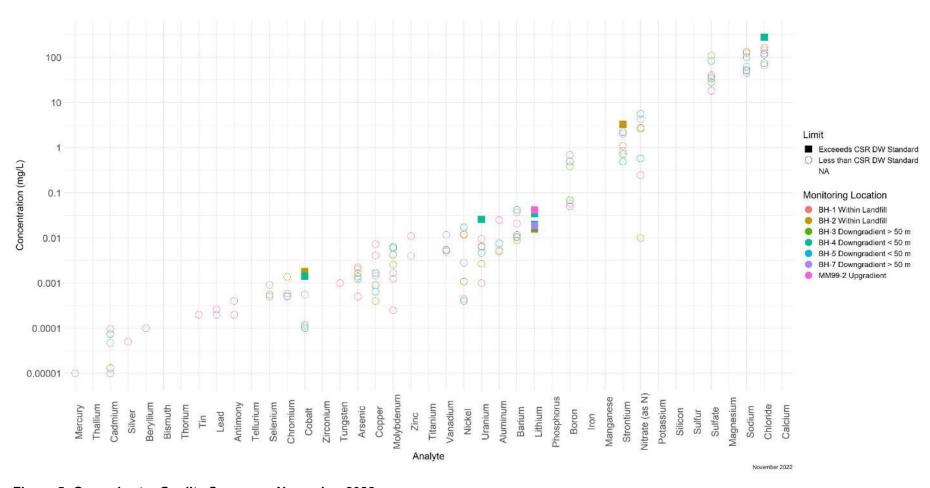


Figure 5: Groundwater Quality Summary, November 2022

A summary of the parameters that exceed the CSR DW standards in the May and November 2022 sampling events is provided in Table 1.

Table 1: BC CSR Drinking Water Exceedances, 2022

Parameter	CSR DW Standard	Upgradient	Within	Landfill	Downgr (< 50			radient 0 m)
		MW99-2	BH-1	BH-2	BH-4	BH-5	BH-3	BH-7
May 2022	May 2022							
Chloride	250	-	279	1	282	-	-	-
Lithium	0.008	0.0403	0.0215	0.0217	0.0346	0.0210	0.0177	0.0192
Strontium	2.5	-	-	3.18	-	-	-	-
November 20	November 2022							
Chloride	250	-	-	-	279	-	-	-
Lithium	0.008	0.0414	0.0156	0.0198	0.0345	0.0198	0.0165	0.0187

Notes:

Concentrations are in milligrams per litre (mg/L)

- Chloride: Chloride exceeded the BC CSR DW standard at BH-1 (within the landfill) in May 2022, and at BH-4 (downgradient within 50 m of the landfill) in May and November 2022. The CSR DW chloride standard of 250 mg/L is to protect against taste and odours concern and is equal to the 2014 Health Canada Guidelines for Canadian Drinking Water Quality. This is consistent with results for chloride exceedances seen in previous years.
- Lithium: Lithium exceeded the BC CSR DW standard at each of the seven monitoring wells sampled in 2022, including the upgradient background monitoring well, MW99-2. The lithium concentrations at the landfill wells ranged from 0.0156 mg/L to 0.0414 mg/L in 2022, with the highest concentration reported at the upgradient background well. The lithium concentrations in the wells sampled were less than the ENV Protocol 9 Regional Background Estimate (0.096 mg/L); however, the Regional Background Estimate was not applied to BH-1, BH-2, BH-7, and MW99-2, as these wells are located just outside the mapped boundary. Based on the landfill background concentration, the Protocol 9 Background Estimate, and the range of lithium concentrations at the Site, it is inferred that the lithium concentrations reported at the Site are considered representative of background conditions.
- Strontium: Strontium exceeded the BC CSR DW standard at BH-2 (within the Landfill) in May 2022. The strontium concentration in BH-2 was less than the ENV Protocol 9 Regional Background Estimate; however, the Regional Background Estimate was not applied to BH-2 as this well is located just outside the mapped boundary.

In addition to the above, the cobalt concentrations at BH-1, BH-2, and BH-4 exceeded the CSR DW standard but were less than the provincial cobalt interim background groundwater concentration estimate, and uranium at BH-4 exceeded the CSR DW standards but were less than the Protocol 9 Regional Background Estimates. As such, these parameter concentrations are not considered contaminated under Section 11(3) of the CSR with respect to that substance.

[&]quot;-" indicates no CSR DW exceedance

The groundwater monitoring results summarized above suggest that any impacts from the landfill on groundwater quality are within the landfill footprint or downgradient within 50 m of the landfill. Furthermore, groundwater concentrations of several parameters (cobalt, lithium, and uranium) are inferred to be representative of background groundwater quality based on the concentrations of these parameters reported in the upgradient monitoring well and the Protocol 9 Regional Background Estimates for the Thompson Okanagan Region.

5.2.2 Groundwater Results Relative to Historical Data (Trend Analyses)

Analyses of select key parameters in groundwater that may be indicative of impacts from landfill leachate are presented in this section, including chloride, ammonia, nitrate plus nitrite, iron and manganese. A times-series of values for the key parameters are provided in Figure 6. The results are separated according to the well location: hydraulically upgradient, within the landfill footprint, hydraulically downgradient less than 50 m from the Site boundary, and hydraulically downgradient greater than 50 m from the Site boundary. A dotted vertical line is placed at the year 2010, the year that the landfill stopped receiving waste. If the concentration is above the CSR DW standard for a parameter the colour of the result is dark orange, if it is less than the CSR DW standard the result is green, and if there is no CSR DW standard then the result is blue. Note that in cases where a result was below the laboratory reporting limit, the result was plotted as being equal to the laboratory reporting limit.

As shown in Figure 6, the concentrations of the key parameters are generally relatively low in the upgradient well, highest at the wells within the landfill, decreasing in the downgradient wells less than 50 m from the Site boundary, and low in the downgradient wells greater than 50 m from the Site boundary. There are no parameter exceedances for these key parameters at the monitoring wells located greater than 50 m from the Site boundary. The concentrations of the key parameters in the monitoring wells within and downgradient within 50 m have generally exhibited a decreasing trend following cessation of filling in 2010. It is noted that the Site was partially covered after filling ceased, which may have limited infiltration and thereby further reduced leaching.

Individual discussion for each of the key parameters follows.

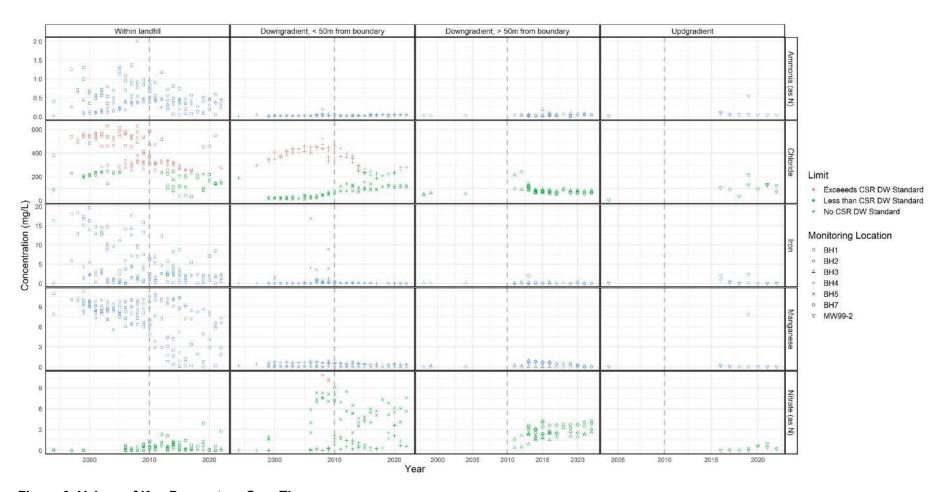


Figure 6: Values of Key Parameters Over Time

5.2.2.1 Chloride

Chloride concentrations in groundwater can become elevated from leachate impacts; however, chloride occurs naturally in groundwater and there are other local sources of chloride in groundwater (i.e., road salt and septic influences). Elevated concentrations of chloride in groundwater downgradient of a landfill do not conclusively indicate an impact from the landfill. However, chloride can move through groundwater more quickly than some other parameters, which are subject to processes that slow their movement, and is therefore potentially an indicator that impacts from other parameters may appear at a later time.

Chloride concentrations are generally highest in the wells located within the landfill and are elevated in the downgradient wells within 50 m of the landfill (Figure 6). The lowest chloride concentrations are in the upgradient well, MW99-2, and the downgradient wells located more than 50 m from the landfill, BH-3 and BH-7. Both wells located within the landfill limits, BH-1 and BH-2, generally show a decline after filling ceased in 2010. Chloride concentrations in BH-5, located downgradient within 50 m of the landfill, indicate a slow increase from before 2010 to a few years after, and in recent years, the chloride concentrations have generally remained stable and less than the CSR DW standard. In the other well located downgradient within 50 m of the landfill (BH-4), chloride concentrations were decreasing between 2010 to 2018, but appear to be increasing in recent years, and in 2022, similarly to 2021, the chloride concentrations at BH-4 in May and November exceeded the CSR DW standard.

These observations are consistent with there being some impact on chloride concentrations in groundwater from the landfill. The chloride concentrations have decreased in monitoring wells within the landfill since filling ceased in 2010, however, chloride impacts are still apparent at downgradient monitoring wells with 50 m of the landfill and decrease with increasing distance from the landfill. The expectation is that with the cessation of landfilling, and with the closure works limiting infiltration, any elevation of chloride concentrations due to landfilling will gradually approach pre-landfill levels over time (assuming no other source exists). The groundwater analytical results reported so far are consistent with that expectation.

5.2.2.2 Ammonia and Nitrate

Decomposition of waste can lead to consumption of oxygen and therefore result in the anaerobic conditions that favour ammonia production. After closure of a landfill, it is expected that decomposition rates will decline over time as organic matter decomposes, and thus ammonia is expected to generally decline over time. There are no CSR DW standards for ammonia, and nitrate concentrations in the wells have been less than the CSR DW standards since 2010.

Concentrations of ammonia are elevated at wells located within the landfill, BH-1 and BH-2, relative to upgradient well MW99-2 (Figure 6). In general, ammonia concentrations are lowest in wells located both upgradient and downgradient of the landfill. This is consistent with ammonia being released due to decomposition of organic matter under low oxygen conditions within the landfill. Furthermore, ammonia may be oxidized, at least in part, to nitrate. Ammonia concentrations shows a general decreasing trend following cessation of filling in 2010.

As shown in Figure 6, nitrate concentrations are relatively low at the wells located within the landfill, and higher in downgradient wells, particularly those located within 50 m of the landfill. This pattern is consistent with ammonia being released from decomposition of waste and then being oxidized to nitrate downgradient from the landfill.

Since the landfill stopped receiving waste in 2010, ammonia concentrations in the monitoring wells within the landfill have generally been declining, while nitrate concentrations in the landfill monitoring wells remain stable.

5.2.2.3 Iron and Manganese

Elevated iron and manganese can sometimes be direct indicators of landfill impacts, in that decomposition of waste can result in anaerobic conditions that tend to mobilize iron from naturally (and sometimes unnaturally) occurring sources. The solubility of iron, though, depends on other factors, such as pH. There are no CSR DW standards for iron or manganese at the Site. Iron and manganese concentrations within the landfill are elevated relative to the upgradient and downgradient monitoring wells. This pattern is consistent with iron and manganese being mobilized in the reducing conditions present in groundwater impacted by anaerobic conditions within the landfill, and with concentrations being lower in more oxidizing conditions downgradient of the landfill.

5.3 Landfill Gas Monitoring

The 2022 landfill gas monitoring events were completed in January, February, March, April, May, June, July, August, September, October, November, and December. Note that the monitoring events conducted in June, July, September and October are partial rounds that include specified vapour wells only. The vapour monitoring results for 2022 are presented in Table B-2 provided in Appendix B.

Methane levels are critical at landfills since methane poses a potential risk to be explosive over a range of concentrations that could be generated at a landfill. Methane was the main focus of the LGMP (Golder 2013) and was discussed further in the Closure Plan (Golder 2015). The monitoring results for methane are discussed in Section 5.3.1, while the results of the other landfill gas concentrations measured, including hydrogen sulphide, carbon dioxide, and oxygen, are discussed in Section 5.3.2.

5.3.1 Methane

The methane action level for *Inside-Boundary* vapour wells is 25% LEL, while the action level for the *Near-Boundary* and *Outside-Boundary* vapour wells is 10% LEL. Methane readings greater than these action levels reported in 2022 are summarized in Table 2, by location.

Table 2: Exceedances of Methane Action Levels in 2022, by Location

Location	Number of Exceedances of Methane Action Level			
(Relative to the landfill)	Inner-Boundary (>25% LEL)	Near-Boundary (>10% LEL)	Outside-Boundary (>10% LEL)	
North	0	0	0	
East	BH102 – February, March, April, and May 2022	0	-	
South	0	-	-	
West	0	0	0	

[&]quot;0" Indicates no exceedance of action levels were reported

[&]quot;-" Indicates no associated vapour wells; % LEL = percent lower explosive limit

As indicated in Table 2, there were four action level exceedances at BH102, located on the east side of the landfill, in February, March, April, and May 2022. However, there were no action level exceedances reported at *Near-Boundary* or *Outside-Boundary* vapour wells in 2022.

A summary of the 2022 methane action level exceedances by vapour well is provided in Table 3, along with the associated carbon dioxide and oxygen measurements.

Table 3: Exceedances of Methane Action Levels in 2022, by Vapour Well

Vapour Well	Date	Action Level (% LEL)	Methane (%LEL)	Carbon Dioxide (%)	Oxygen (%)
	14 February 2022		100	24.9	0.9
BU102	8 March 2022	25	100	21.7	0.4
BH102	25 April 2022		100	20	0.3
	2 May 2022		100	21.6	0

[%] LEL = percent lower explosive limit

Methane readings for BH102 were 0% LEL during the January monitoring event, along with the remainder of the year starting in July 2022. In the monitoring event following the May exceedance on 13 June 2022, the methane reading in BH102 was measured to be 2% LEL, less than the action level.

There are three step-out vapour wells associated with BH102 (VP07-02, VP15-01, and VP15-02). It is noted that RDCO have frequently encountered difficulty in collecting samples from VP15-02 due to high purge back pressure. The methane concentrations in the associated step-out vapour wells for BH102 were below the action level; as such, no additional action was required for the action level exceedance reported at BH102.

The maximum methane concentration recorded by vapour well and year is illustrated in Figure 7. Note that the *Outside Boundary* vapour wells located to the north of the landfill were removed in mid-2018 as part of the development work on these off-site properties.

^{% =} percent

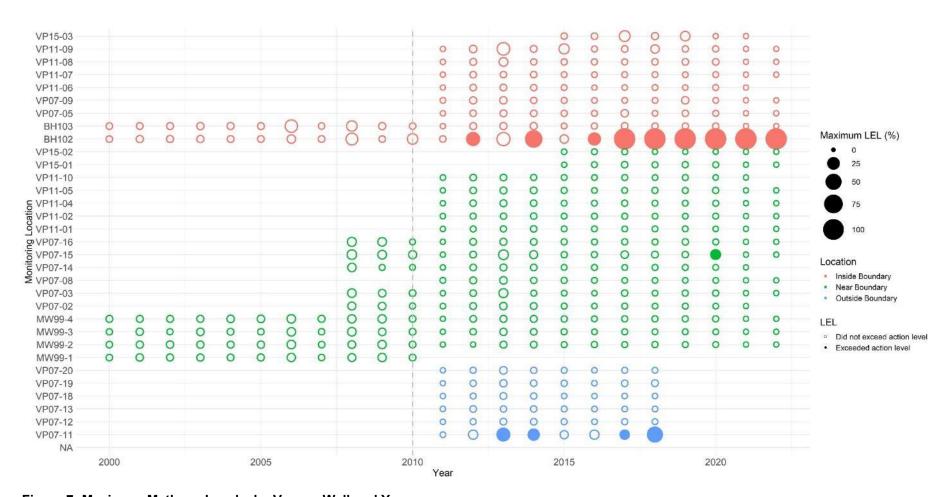


Figure 7: Maximum Methane Levels, by Vapour Well and Year

5.3.2 Other Landfill Gases

The median, maximum, and minimum measurements of hydrogen sulfide, oxygen, and carbon dioxide measured in 2022 are summarized in Table 4.

Table 4: Median, Maximum, and Minimum Measurements of Other Landfill Gases, 2022

Gas	Median	Maximum	Minimum
Hydrogen Sulfide (ppm)	0	0	0
Oxygen (%)	19.4	20.9	0
Carbon Dioxide (%)	1.2	21.7	0

ppm = parts per million

Hydrogen sulfide concentrations measured in 2022 were below the detection limit of the instrument, similar to previous monitoring events.

The measured concentrations of oxygen and carbon dioxide vary considerably between vapour wells, and also vary over time at a given vapour well. Oxygen levels have historically varied from essentially atmospheric levels of just under 21% down to undetectable concentrations. Carbon dioxide concentrations have historically varied from undetectable concentrations up to a maximum of 37.1% reported at BH102 on 15 May 2017. In 2022, the maximum carbon dioxide concentration measured was 21.7% at BH102 on 8 March 2022.

5.4 Groundwater Elevations

The depth to groundwater and calculated groundwater elevations from the 2022 monitoring events are presented in Table B-3 of Appendix B. The groundwater elevations measured in 2022 are similar to those recorded in the past, as illustrated in Figure 8. The range of groundwater elevations at a given well are small compared with the differences between wells, hence the pattern of groundwater flow beneath the landfill is expected to remain fairly consistent from year to year.

The groundwater elevations and estimated groundwater elevation contours are included in Figure 2. Groundwater elevations are sufficiently consistent that Figure 2 has not been updated with 2022 data; it would not make any appreciable difference to the shape of the groundwater contours or to the inferred flow direction. Based on historical groundwater elevation measurements, as well as the general topography of the area, the inferred groundwater flow at the Site is in a southeasterly direction.

^{% =} percent

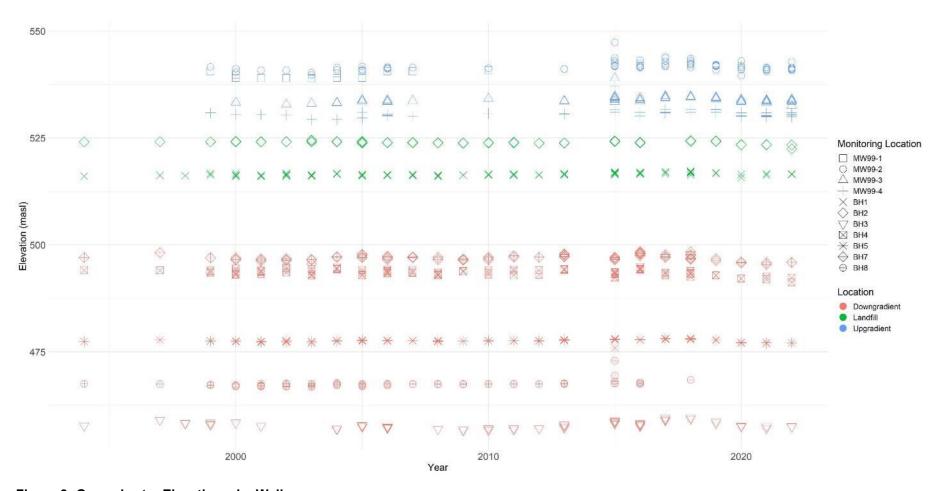


Figure 8: Groundwater Elevations, by Well

5.5 Quality Assurance / Quality Control (QA/QC)

The results of the Quality Assurance / Quality Control (QA/QC) program are provided in Appendix D including the calculated RPD and DF values for the paired groundwater analyses (presented in Table D-1). No field or laboratory QA/QC issues that would adversely affect interpretation of the data or identifying exceedances of CSR DW standards were identified. As such, the results of the QA/QC program suggest that groundwater data collected during 2022 are accurate and reproducible and can be relied upon for the purposes of this report.

6.0 DISCUSSION OF GROUNDWATER AND LANDFILL GAS MONITORING AND SAMPLING

There are two main components to the current monitoring program at the Westside Landfill: 1) groundwater monitoring and sampling, and 2) landfill gas monitoring. The key results from each component are summarized in the following sections.

6.1 Groundwater Monitoring and Sampling

As discussed in Section 5.2.1, exceedances of the CSR DW standards were reported for chloride, lithium, and strontium in 2022, including:

- **Chloride:** Chloride exceeded the BC CSR DW standard at BH-1 (within the landfill) in May 2022, and at BH-4 (downgradient within 50 m of the landfill) in May and November 2022.
- Lithium: Lithium exceeded the BC CSR DW standard at each of the seven monitoring wells sampled in 2022, including the upgradient background monitoring well, MW99-2. The lithium concentrations at the landfill wells ranged from 0.0156 mg/L to 0.0414 mg/L in 2022, with the highest concentration reported at the upgradient background well. The lithium concentrations in the wells sampled were less than the ENV Protocol 9 Regional Background Estimate (0.096 mg/L); however, the Regional Background Estimate was not applied to BH-1, BH-2, BH-7 and MW99-2, as these wells are located just outside the mapped boundary.
- Strontium: Strontium exceeded the BC CSR DW standard at BH-2 (within the Landfill) in May 2022. The strontium concentration in BH-2 was less than the ENV Protocol 9 Regional Background Estimate; however, the Regional Background Estimate was not applied to BH-2 as this well is located just outside the mapped boundary.

In addition, the cobalt concentrations at BH-1, BH-2, and BH-4 exceeded the CSR DW standard but were less than the provincial cobalt interim background groundwater concentration estimate, and uranium at BH-4 exceeded the CSR DW standards but were less than the Protocol 9 Regional Background Estimates. As such, these parameter concentrations are not considered contaminated under Section 11(3) of the CSR with respect to that substance.

The groundwater monitoring results suggest that any impacts of the landfill on groundwater quality (greater than the CSR DW standards) are within the landfill footprint or downgradient within 50 m of the landfill. Furthermore, groundwater concentrations of several parameters (cobalt, lithium, and uranium) are inferred to be representative of background groundwater quality based on the concentrations of these parameters reported in the upgradient monitoring well and the Protocol 9 Regional Background Estimates for the Thompson Okanagan Region.

As discussed in Section 5.2.2, groundwater quality in relation to the key parameters selected as potential indicators of impacts from landfill leachate (including chloride, ammonia, nitrate/nitrite, iron, and manganese) appears to be generally improving in the downgradient monitoring wells. The trend to lower concentrations started circa 2011, following cessation of disposal at the Westside Landfill in 2010, and placement of cover soils over a significant portion of the formerly active area.

6.2 Landfill Gas

Under the LGMP (Golder 2013), methane measurements are to be compared to criteria specific to the monitoring location, based on the location of the monitor relative to the property boundary. Vapour well BH102 was the only vapour well in 2022 at which the associated action level was exceeded. The methane readings of 100% LEL at BH102 in February, March, April, and May 2022 exceeded the methane action level for *Inside-Boundary* vapour wells of 25% LEL. The reported concentrations of methane at the three step-out vapour wells in 2022 were below their associated action levels as outlined in the LGMP, such that no further action or reporting was required. In the subsequent monitoring event, the methane reading at BH102 on 13 June 2022 was measured to be 2% LEL, and the methane readings at BH102 were 0% LEL for the remainder of the 2022 monitoring events.

The concentrations of hydrogen sulphide reported in 2022 were reported below the instrument detection limits, while the concentrations of carbon dioxide and oxygen varied from well to well and from reading to reading.

7.0 RECOMMENDATIONS

Recommendations for changes to the monitoring and inspection plan outlined in the Closure Plan were formally accepted by the ENV as of September 2017. In 2020, an Updated Landfill Monitoring Program (LMP) report was prepared to 1) reflect the landfill gas monitoring wells installed since the 2014 Updated LMP, 2) update the LMP to reflect the vapour wells decommissioned in 2018 and provide recommendations for replacement of the decommissioned vapour wells, and 3) review the required monitoring and sampling requirements following closure activities of the Westside Landfill (Golder 2020). At the time of writing this report, the amendment application for OC PR#12217 and Updated Landfill Monitoring Program report are under review with ENV (Golder 2020). Those recommendations provided in the 2020 Updated LMP included:

- Replacement of VP07-11 (due to the elevated methane identified in 2017 and 2018) with three replacement vapour wells on Site.
- Continued groundwater sampling and analysis every two years at BH-1 for extractable petroleum hydrocarbons (EPH), benzene, toluene, ethylbenzene and xylenes (collectively referred to as BTEX), volatile organic compounds (VOCs), total dissolved solids (TDS), biochemical oxygen demand (BOD) and chemical oxygen demand (COD); discontinue sampling and analysis at BH-1 for all other analyses under Section 3.3.4 of OC PR#12217; and discontinue all analysis at BH-4 under Sections 3.3.3 and 3.3.4 of OC PR#12217.

Following completion and submission of this report, four full years of post-closure monitoring data are available. As such, WSP recommends that the monitoring and sampling requirements outlined in the Updated LMP be re-assessed.

8.0 LIMITATIONS AND USE OF REPORT

This report was prepared for the exclusive use of Regional District of the Central Okanagan. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it are the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

The report, which includes all appendices and attachments, is based on data and information collected during the investigation conducted by WSP's personnel. It provides a level of assurance commensurate with the level of study. The report is based solely on the Site conditions at the time of the Site investigation conducted in 2022, as described in this report.

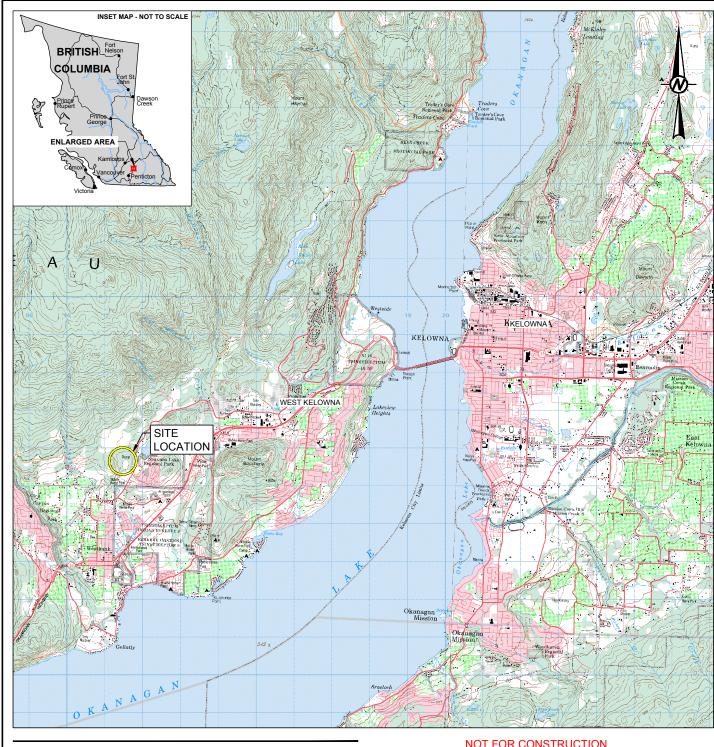
In evaluating the Site, WSP has relied in good faith on information provided by the individuals and agencies noted in this report. We accept no responsibility for any deficiency, misstatements, or inaccuracies contained in this report as a result of omissions, misinterpretations of fraudulent acts of the persons or agencies interviewed.

The assessment of environmental conditions and possible hazards at this Site has been made using the results of chemical analysis of discrete groundwater samples from a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at borehole, monitoring well, and test pit locations. Subsurface conditions may vary from these sample locations. Additional study, including further subsurface investigation, can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a Site may be contaminated and remain undetected.

This investigation was performed according to current professional standards and practices in the environmental field. If new information is discovered during future work, including excavations, borings, or other activities or studies, WSP should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

9.0 CLOSURE

We trust that this report provides you with the information that you require at this time. Should you require additional information or have any questions, please feel free to contact the undersigned at your earliest convenience.


WSP Canada Inc.

Mackenzie Scherer, BSc, CIT Geoscientist Jacqueline Foley, MSc, PLGeo Senior Principal Hydrogeologist

MS/JF/lih

https://golderassociates.sharepoint.com/sites/112657/project files/6 deliverables/issued to client_for wp/19127217-004-r-rev0/19127217-004-r-rev0-2022 westside landfill 24apr_23.docx

PERMIT TO PRACTICE #1000200 Engineers & Geoscientists BC

REFERENCE

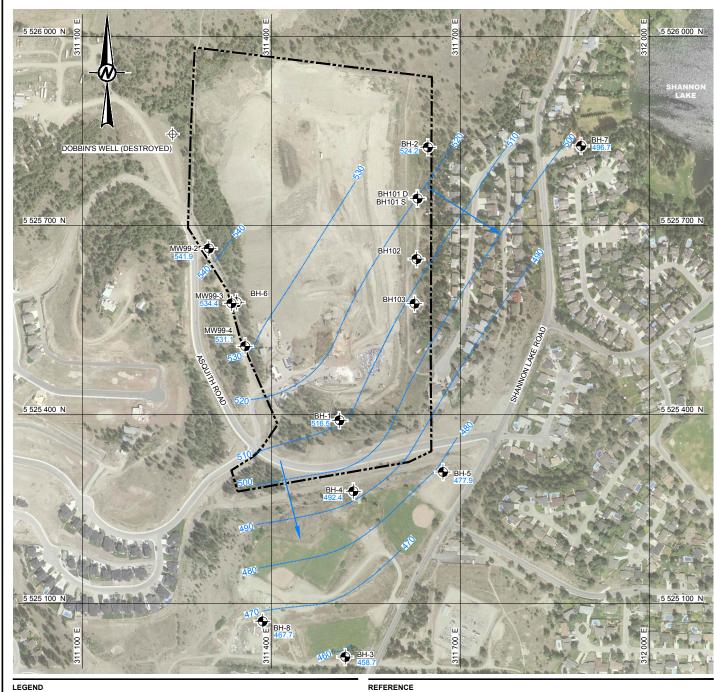
TOPOGRAPHIC MAPS 82E/13 AND /14 © 2001 AND 1999 HER MAJESTY THE QUEEN IN RIGHT OF CANADA. DEPARTMENT OF NATURAL RESOURCES. ALL RIGHTS RESERVED.

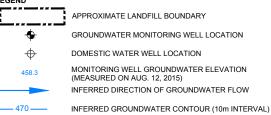
NOT FOR CONSTRUCTION

REGIONAL DISTRICT OF CENTRAL OKANAGAN

CONSULTANT

YYYY-MM-DD	2023-04-24
PREPARED	R. MARTIN
DESIGN	M. SCHERER
REVIEW	M. SCHERER
APPROVED	J. FOLEY


PROJECT


2022 MONITORING REPORT WESTSIDE LANDFILL WEST KELOWNA, B.C.

TITLE

KEY PLAN

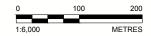
PROJECT No.	PHASE/DOC#	Rev.	FIGURE
19127217	3000/004	0	1

NOTES

- ALL UNITS IN METRES UNLESS OTHERWISE STATED. COORDINATES ARE IN UTM NAD83, ZONE 10.

REGIONAL DISTRICT OF CENTRAL OKANAGAN

CONSULTANT



YYYY-MM-DD	2023-04-24
PREPARED	R. MARTIN
DESIGN	M. SCHERER
REVIEW	M. SCHERER
APPROVED	J. FOLEY

REFERENCE

1. ORTHOPHOTO OBTAINED FROM RDCO. IMAGERY DATE: 2009

NOT FOR CONSTRUCTION

2022 MONITORING REPORT WESTSIDE LANDFILL WEST KELOWNA, B.C.

GROUNDWATER MONITORING LOCATIONS AND INFERRED DIRECTION OF GROUNDWATER FLOW

PROJECT No.	PHASE/DOC#	Rev.	FIGURE
19127217	3000/004	0	2

CLIENT

REGIONAL DISTRICT OF CENTRAL OKANAGAN

CONSULTANT

YYYY-MM-DD	2023-04-24	
PREPARED	R. MARTIN	
DESIGN	M. SCHERER	
REVIEW	M. SCHERER	
APPROVED	J. FOLEY	

PROJECT

2022 MONITORING REPORT WESTSIDE LANDFILL WEST KELOWNA, B.C.

GROUNDWATER MONITORING AND SOIL VAPOUR WELL LOCATIONS

19127217	3000/004	0	3
PROJECT No.	PHASE/DOC#	Rev.	FIGURE

APPENDIX A

Westside Landfill Operational Certificate Letter

Suite 201 3547 Skaha Lake Road Penticton British Columbia V2A 7K2 Telephone: (250) 490-8200 Fax: (250) 492-1314

MINISTRY OF ENVIRONMENT, LANDS AND PARKS

OPERATIONAL CERTIFICATE PR 12217

Under the provisions of the Waste Management Act and in accordance with the Approved Regional District of Central Okanagan Solid Waste Management Plan,

Regional District of Central Okanagan

1450 KLO Road

Kelowna, British Columbia

V1W 3Z4

is authorized to manage recyclable materials and to discharge refuse to the ground at a landfill facility located approximately 2.5 km north of Westbank, British Columbia, subject to the conditions listed below. Contravention of any of these conditions is a violation of the Waste Management Act and may result in prosecution.

I AUTHORIZED DISCHARGES

- 1.1 The discharge of refuse to which this Sub-Section is applicable is shown on the attached Site Plan A. The reference number for this discharge is E223888.
 - 1.1.1. The maximum rate at which refuse may be discharged to the landfill is 20,000 tonnes per year.
 - 1.1.2 The type of refuse which may be discharged is municipal solid waste and other wastes as authorized by the Regional Waste Manager.
 - 1.1.3 The works authorized are a sanitary landfill and related appurtenances.
 - 1.1.4 The location from which the discharge originates is generally the area on the west side of Okanagan Lake within the boundaries of the Regional District of Central Okanagan.

T.R. Forty, P.Eng.
Assistant Regional Waste Manager

Date Issued: May 28, 1997 Amendment Date: (most recent)

1.1.5 The location of the approximate area of discharge is that Part of District Lot 3794 ODYD shown on Plan C11135 Except Plan KAP46607 as shown on Site Plan A.

2 GENERAL REQUIREMENTS

2.1 Maintenance of Works and Emergency Procedures

The holder of the Operational Certificate shall inspect the landfill, any related pollution control works and designated areas for managing recyclable or reusable materials regularly and maintain them in good working order. In the event of an emergency or condition beyond the control of the holder of the Operational Certificate which prevents continuing operation of the authorized method of pollution control, the holder of the Operational Certificate shall immediately notify the Regional Waste Manager and take appropriate remedial action.

2.2 Process Modifications

The holder of the Operational Certificate shall notify the Regional Waste Manager prior to implementing changes to any process that may affect the quality and/or quantity of the discharge.

2.3 Plans - New Works

Plans and specifications of any new works related to this facility shall be submitted to the Regional Waste Manager and his consent obtained before construction commences. The works shall be constructed in accordance with such plans. Review of the submitted plans and specifications is for the purpose of administration of the Operational Certificate and only implies that the works specified therein meet the appropriate guidelines, criteria or standards.

2.4 Operational and Closure Plan

2.4.1 An Operational and Closure Plan, prepared by a suitably qualified professional shall be submitted for authorization by the Regional Waste Manager, on or before July 31, 1997.

T.R. Forty, P.Eng.

Assistant Regional Waste Manager

VVJ AC' 10 0007

Date Issued: May 28, 1997 Amendment Date: (most recent)

2.4.2 The Operational and Closure Plan shall include the following:

- Anticipated total waste volumes and tonnage, and life of the landfill (ie: closure date);
- A topographic plan showing the final elevation contours of the landfill and surface water diversion and drainage controls;
- Design of the final cover including the thickness and permeability of barrier layers and drainage layers, and information on topsoil, vegetative cover and erosion prevention controls;
- Procedures for notifying the public about the closure and about alternative waste disposal facilities;
- Rodent and nuisance wildlife control procedures;
- Proposed end use of the property after closure;
- A plan for monitoring groundwater, surface water and landfill gas, erosion and settlement for a minimum post-closure period of 25 years;
- A plan and accompanying design for the collection, storage and treatment/use of landfill gas for a minimum of 25 years;
- A plan for operation of any required pollution abatement engineering works such as leachate collection and treatment systems, for a minimum post-closure period of 25 years;
- A schedule of reserve funds or security to be collected each year until closure; to cover estimated costs of closure, post-closure and a contingency for remediation;
- A screening plan, ie: vegetative or berm, designed by a landscape architect with particular focus on the east side of the landfill;
- A detailed fill plan for the east side of the landfill;
- A perimeter and electric bear control fencing design;
- Litter and odour control measures;
- Design of gas monitoring wells for lateral migration and the proposed gas monitoring program;
- Final cover design and a schedule to cover previously filled areas that are no longer going to receive waste, particularly on the east side of the landfill;
- Contingency plan & notification procedures in the event of an emergency;
- Training procedures for operators; and
- Any other site specific concerns as identified by the Regional Waste Manager.
- 2.4.3 Terms of reference for the Operational and Closure Plan are subject to authorization by the Regional Waste Manager.

T.R. Forty, P.Eng.
Assistant Regional Waste Manager

- 2.4.4 The Regional Waste Manager may request revisions to the Operational and Closure Plan. Terms of reference for the revisions to the Operational and Closure Plan are subject to authorization by the Regional Waste Manager.
- 2.4.5 Operation of this landfill is to be in substantial accordance with the authorized Operational and Closure Plan.
- 2.4.6 If there is an inconsistency between this Operational Certificate and the authorized Operational and Closure Plan, the Operational Certificate shall take precedence.

2.5 Ground and Surface Water Quality Impairment

- 2.5.1 Landfills must not be operated in a manner such that ground or surface water quality decreases beyond that allowed by the Approved and Working Criteria for Water Quality dated 1995 prepared by the Water Quality Branch of the Ministry of Environment, Lands and Parks at or beyond the landfill property boundary. The appropriate water quality criteria will be specified by the Regional Waste Manager after reviewing uses of the ground and surface water resources.
- 2.5.2 If excursions result to the specified water quality criteria, the Regional Waste Manager may require that leachate management control measures or works be undertaken. Terms of reference for any leachate management study and/or design work is subject to the authorization of the Regional Waste Manager.

2.6 Landfill Gas Management

- 2.6.1 An assessment of the emissions of non-methane organic compounds (NMOCs) is required for landfills exceeding a total capacity of 100,000 tonnes. If NMOCs are determined to exceed 150 tonnes/year, landfill gas recovery and management systems will be required to be designed, installed and operational within 3 years. If NMOCs are projected to be less than 150 tonnes/year for the operating life of the landfill, an assessment for the need of passive gas venting will be required. Terms of reference for any landfill gas study or design is subject to the authorization of the Regional Waste Manager.
- 2.6.2 The gas monitoring wells, designed by a suitably qualified professional, are to be installed on or before August 31, 1998.

2.7 Property Boundary

The buffer zone between any municipal solid waste discharged after the issuance of this Operational Certificate and the property boundary is to be at least 50 metres of which the 15 metres closest to the property boundary must be reserved for natural or landscaped screening (berms or vegetative screens). Depending on adjacent land use and environmental factors, buffer zones of less than 50 metres but not less than 15 metres may be authorized by the Regional Waste Manager.

2.8 · Other Facilities

The distance between the discharged municipal solid waste and the nearest residence, water supply intake, hotel, restaurant, food processing facility, school, church or public park is to be a minimum of 300 metres. Greater or lesser separation distances may be authorized where justified. For those landfills designed to collect and recover methane gas generated, the issue of potential onsite or off-site users of the energy should be addressed in siting the landfill, consistent with the preceding regarding public places. An exemption is granted to discharge municipal solid waste closer than 300 m to the existing residences located in the subdivision to the east of the landfill.

2.9 Natural Control Landfill

- 2.9.1 The bottommost solid waste cell is to be at least 1.2 metres above the seasonal high water table. Greater or lesser separation depths may be authorized based on soil permeability and the leachate renovation capability of the soil.
- 2.9.2 There is to be at least a 2 metres thick layer of low permeability soil with a hydraulic conductivity of 1 x 10-6 cm/s or less (i.e. silt or clay), below each of the bottommost waste cells. Lesser thicknesses or no layer of low permeability soil may be authorized based on the potential for leachate generation and the unsaturated depth, permeability and leachate renovation capability of the existing soil.

2.10 Water

The disposal of municipal solid waste into water is unacceptable. Surface water diversion to restrict storm water runoff from contacting the wastes is required.

2.11 Final Cover

Final cover for landfill sites is to consist of a minimum of 1 metre of low permeability (<1 x 10-5 cm/s) compacted soil plus a minimum of 0.15 metre of topsoil with authorized vegetation established. The depth of the topsoil layer should be related to the type of vegetation proposed (ie rooting depth). Soils of higher permeability may be authorized based on leachate generation potential at the landfill site. Final cover is to be constructed with slopes between 4% and 33% with appropriate run-on/run-off drainage controls and erosion controls. An assessment of the need for gas collection and recovery systems shall be made so that, in the event such systems are required, cover can be appropriately designed and constructed. Final cover is to be installed within 90 days of landfill closure or on any areas of the landfill which will not receive any more refuse within the next 12 months. Completed portions of the landfill are to progressively receive final cover during the active life of the landfill.

Additional layers of natural materials including earth and aggregate and/or synthetic materials may be necessary for inclusion in the final cover design due to site specific conditions and the presence of management systems for leachate and landfill gas.

2.12 Access Road

An appropriately constructed and maintained access road to, and a road system within the landfill site capable of supporting all vehicles hauling waste, are required during the operating life of the landfill.

2.13 Fencing and Access

- 2.13.1 Fencing is required to be installed around the perimeter of the landfill on or before April 1, 1998. The type and extent of fencing will depend on the existing natural vegetation and topographic features and is to be authorized by the Regional Waste Manager. All access points are to have locking gates.
- 2.13.2 Bears shall be prevented from accessing any and all putrescible refuse from April to November inclusive through the use of electric fencing. Electric fencing is to be installed on or before April 1, 1998 and maintained thereafter.

- 2.13.3 The holder of the Operational Certificate is to conduct a public relations campaign 3 months prior to the installation of electric fencing. The purpose of the campaign is to inform the public of the impacts of installing electric fencing around the landfill. The Conservation Officer Service is to be consulted in the development of the public relations campaign.
- 2.13.4 Signage is to be attached to the electric fence at regular intervals with an appropriate safety warning indicating that the fence is electrified.

2.14 Design by Qualified Persons

All landfills are to be designed by persons qualified in landfill site selection, design and operation. All plans, specifications, and reports are to be sealed by a professional engineer or geoscientist licensed to practice in the province of British Columbia.

2.15 Prohibited Wastes

The co-disposal of the following wastes with the rest of the municipal solid waste is prohibited unless specifically authorized by the Regional Waste Manager:

- Special Wastes other than those specifically authorized in the Special Waste Regulation
- Bulk liquids and semisolid sludges which contain free liquid;
- Liquid or semisolid wastes including septage, black water, sewage treatment sludge, etc.;
- Automobiles, white goods, other large metallic objects and tires;
- Biomedical waste as defined in the document Guidelines for the Management of Biomedical Waste in Canada (CCME, February 1992); and
- Dead animals and slaughter house, fish hatchery and farming wastes or cannery wastes and byproducts.

Burial of these wastes in dedicated locations (i.e. avoiding co-disposal) at a landfill site may be authorized by the Regional Waste Manager only if there is no other viable alternative such as treatment/disposal, recycling, reprocessing or composting. The viability of alternatives is to be determined by the Regional Waste Manager based on submission of cost data by the holder of the Operational Certificate. For those cases in which the dedicated disposal of otherwise prohibited wastes is authorized, the specific on-site location of the disposal shall be recorded to allow ready access to the waste should corrective or further action pertaining to the management of these wastes be required by the Ministry at some time in the future.

T.R. Forty, P.Eng. Assistant Regional Waste Manager

/ann B

2.16 Hydrocarbon Contaminated Soils

The deposit of hydrocarbon contaminated soils below the Special Waste Regulation criteria is authorized at this landfill subject to the following conditions:

- Soil contaminated with hydrocarbons shall be deposited in layers less than 0.3 meters; and
- Soil contaminated with hydrocarbons shall be deposited a minimum of 1.2 meters above the seasonal high groundwater level and a minimum of 2.0 meters below the final grade of the landfill to prevent the impact on groundwater and any future vegetation on the site.

2.17 Designated Areas

Maintain areas for the separation, handling and storage of recyclable or reusable materials where applicable.

When a separated recyclable material is a special waste it is to be stored and managed in accordance with the Special Waste Regulation.

Composting of yard waste is to be in accordance with the Production and Use of Compost Regulation.

2.18 Signs

A sign is to be posted at each entrance of the landfill with the following current information:

- Site name
- Owner and operator
- Contact phone number and address for owner and operator
- Phone number in case of emergency (such as fire)
- Hours of operation (if applicable)
- Materials/wastes accepted for landfill and recycling
- Materials/wastes banned
- Tipping fees (if applicable)

Additional signs which clearly indicate the directions to the active tipping face, public disposal area, recycling and waste separation areas, etc. should also be displayed.

2.19 Supervision

Fulltime, trained operators on-site are required at this landfill during operating hours. The gates are to be locked to prevent unauthorized access during nonoperating hours. Properly designed and maintained public waste disposal and/or recyclable material bins situated outside the main gate may be provided for after hours use. The operator is required to be familiar with the Operational Certificate, inspection records, the authorized Operations and Closure Plan and all annual reports.

2.20 Scavenging

Scavenging of waste is to be prevented. The salvaging of wastes should be encouraged by providing areas and facilities for separation of recyclable or reusable materials.

2.21 **Dust Control**

Dust created within the landfill property is to be controlled, using methods and materials acceptable to the Regional Waste Manager, such that it does not cause a public nuisance.

2.22 Waste Compaction and Covering

- 2.22.1 Wastes are to be spread in thin layers (0.6 m or less) on the working face and compacted. The working face area should be minimized as much as possible. A compacted layer of cover material of at least 0.15 metre of soil or functionally equivalent depth of other cover material, as authorized by the Regional Waste Manager, is to be placed on all exposed solid waste at the end of each day of operation. If the landfill should operate continuously 24 hours per day, 0.15 m of cover material is to be applied at a frequency authorized by the Regional Waste Manager. Under specific circumstances, such as during bear season, the Regional Waste Manager may specify more stringent cover requirements. During periods of extreme weather conditions, such as those that cause the ground to freeze, an exemption to the normal cover requirements may be authorized at a frequency authorized by the Regional Waste Manager.
- 2.22.2 An intermediate cover consisting of a compacted layer of at least 0.30 metre of soil or functionally equivalent depth of other cover material is to be placed where no additional solid waste has been deposited or will be deposited within a period of 30 days.

T.R. Forty, P.Eng. Assistant Regional Waste Manager

gin/nin 🕅

2.23 Litter Control

Litter is to be controlled by compacting the waste, minimizing the working face area, applying cover, providing litter control fences and instituting a regular litter pickup and general good housekeeping program or any other measures required by the Regional Waste Manager.

2.24 Vectors

Vectors are to be controlled by the application of cover material at a specified frequency or by other control measures as required and authorized by the Regional Waste Manager.

2.25 Wildlife

The landfill is to be operated so as to minimize the attraction of wildlife such as bears and birds by applying cover at required frequencies and instituting a good housekeeping program. Further control measures, such as bear control fences, and bird control devices, may be specified by the Regional Waste Manager.

2.26 Fire Protection

Adequate fire fighting equipment is to be available to extinguish surface or underground fires. Recyclables and reusable materials are to be stored in such a manner to not constitute a fire hazard.

3 MONITORING AND REPORTING REQUIREMENTS

3.1 Municipal Solid Waste Measurement

- 3.1.1 Provide and maintain a weigh scale and record the weight of refuse discharged to the landfill over a 24-hour period.
- 3.1.2 Record the weight of recyclable and reusable materials not being discharged and that are being separated, stored or processed at the landfill over a 24-hour period.
- 3.1.3 Density tests are to be performed utilizing a known scaled volume of representative compacted refuse at a frequency of at least once per year and reported in kg per m3.

3.2 Water Levels

Measure the water level and determine the elevation, on a quarterly basis, in monitoring wells BH1 (E224611), BH2 (E224612), BH4 (E224617), BH5 (E224618), BH6 (E224620), BH7 (E224621), BH8 (E224623) and Dobbin's Well (E224624) as shown on Site Plan B.

3.3 Water Quality

- 3.3.1 Install a suitable sampling facility and obtain a grab sample on a quarterly basis, of the groundwater, in monitoring wells BH1 (E224611), BH2 (E224612), BH4 (E224617), BH5 (E224618) and Dobbin's Well (E224624) as shown on Site Plan B.
- 3.3.2 Obtain analyses of the samples in section 3.3.1 for the following:
 - conductivity, total alkalinity (CaCO₃), chloride, sulphate, ammonia nitrogen, nitrate nitrogen, aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, chromium, cobalt, copper, iron, lead, lithium, magnesium, manganese, molybdenum, nickel, phosphorous, potassium, selenium, strontium, thallium, tin, titanium, tungsten, vanadium, and zinc.
- 3.3.3 Obtain grab samples, every two years, of the groundwater in monitoring wells BH1 (E224611) and BH4 (E224617) as shown on Site Plan B.
- 3.3.4 Obtain analyses of the samples in section 3.3.3 for the following:
 - total dissolved solids, boron, total purgeable hydrocarbons, total extractable hydrocarbons, volatile organics (EPA 624) and acid and base/neutral extractable organics (EPA 625), BOD, COD, and phenolics.
- 3.3.5 Obtain suitable grab samples, on an annual basis, of the groundwater in all domestic water wells being used for drinking water purposes within 1000m down-gradient of the landfill subject to obtaining permission from the water well owner.
- 3.3.6 Obtain analyses of the samples in section 3.3.5 for conductivity and chloride.

ospilot.

3.4 Vegetation Monitoring

Inspect vegetation during the growing season in the vicinity of the landfill at least once per year to determine if any environmental impacts are occurring.

3.5 Sampling and Analytical Requirements

3.5.1 The sampling and monitoring requirements specified above shall be carried out in accordance with the appropriate procedures listed in the table below. Alternative test methods may be used provided that the alternative test methods are authorized by the Regional Waste Manager prior to performing the actual source testing. Test methods for parameters not listed below require the consent of the Regional Waste Manager.

Parameter	Source Testing Procedure	Analytical Procedure
Particulate Matter Rate of Discharge (flow rate) Gaseous emissions	Stationary Emission Testing Code - contained in British Columbia Field Sampling Manual for Continuous Monitoring plus the Collection of Air, Air- Emission, Water, Wastewater, Soil, Sediment, and Biological Samples, 1996 Permittee Edition	A Laboratory Manual for the Chemical Analysis of Ambient Air, Emissions, Precipitation, Soll and Vegetation, 3rd edition, April 1983, 253 pp.
LIQUID EFFLUENTS, SURFACE	E WATER, GROUND WATER, SOILS, SED	IMENTS, VEGETATIVE MATTER:
Parameter	Source Testing Procedure	Analytical Procedure
Metals Nutrients Organics Toxicity	British Columbia Field Sampling Manual for Continuous Monitoring plus the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples, 1996 Permittee Edition	British Columbia Environmental Laboratory Manual for the Analysis of Water, Wastewater, Sediment and Biological Materials, March, 1994, Permittee Edition

The above manuals are available from Queen's Printer Publications Centre, P.O. Box 9452, Stn. Prov. Govt, Victoria, BC, V8W 9V7 (1-800-663-6105 or (250) 387-4609). The above manuals are also available for inspection at all Pollution Prevention offices.

- 3.5.2 Proper care should be taken in sampling, storing and transporting the samples to adequately control temperature and avoid contamination and breakage.
- 3.5.3 Maintain the groundwater monitoring wells including provisions to ensure protection from damage due to vehicles or vandalism.

- 3.5.4 Groundwater monitoring wells are to be covered with lockable caps, fitted with locks all keyed alike, and a key is to be provided to the Regional Waste Manager.
- 3.5.5 Three well bore volumes are to be pumped from each monitoring well prior to sample collection.

3.6 Changes to Sampling and Monitoring Program

On the basis of findings during routine inspections and any other information related to the effect of the discharge on the receiving environment, the Regional Waste Manager may allow reductions or require additional sampling and monitoring of the discharge and receiving environment.

3.7 Annual Report

An annual operations and monitoring report is to be submitted to the Regional Waste Manager within 60 days of the end of the calendar year. The first annual report is due on March 1, 1998. These reports are to contain at least the following information:

- Total volume and/or weight of waste discharged into the landfill for the year,
- Service population and waste discharge rate for the year (in tonnes per capita
 per year) and a trend analysis with a comparison to the 1990 baseline waste
 discharge rate of 1.20 tonnes per capita per year;
- Authorized design volume;
- Remaining site life and capacity;
- Operational plan for next 12 months;
- Operation and maintenance expenditures;
- Monitoring data compilation, interpretation and trend analysis prepared by a suitably qualified professional regarding landfill gas, vegetation and leachate/water quality including a review of groundwater elevations and flow direction and a comparison made to the <u>drinking water</u> parameters found in the Approved and Working Criteria for Water Quality dated April 1995.;
- Amounts of leachate collected, treated and disposed;
- Any changes from authorized reports, plans and specifications;
- any changes to the contingency plan;
- Amount of landfill gas collected and its disposition;
- Review of the closure plan and associated estimated costs, including an update
 of the schedule of reserve funds or security to be collected each year until
 closure; to cover estimated costs of closure, the 25 year post-closure period
 and a contingency for remediation; and

Any other data relevant to this Operational Certificate

Format of Submission 3.8

Monitoring and/or reporting information shall be submitted in an electronic and/or printed format which is suitable for review by the public and/or other government agencies and is satisfactory to the Regional Waste Manager.

3.9 Financial Security

Provide a future financial security of the operations at and beyond closure by establishing a Closure Fund in a form acceptable to the Regional Waste Manager, such as upfront security or a fund financed on a charge per tonne of waste disposed basis. Such a fund would be analogous to the provincial Waste Management Trust Fund which the Minister may establish under Section 53 of the Waste Management Act. The ultimate amount of the financial security shall meet or exceed the currently estimated closure and post-closure costs as outlined in the closure plan plus a reasonable contingency for any remediation which may be required. For municipally owned landfills, the financial security can be built up over time according to a schedule authorized by the Regional Waste Manager.

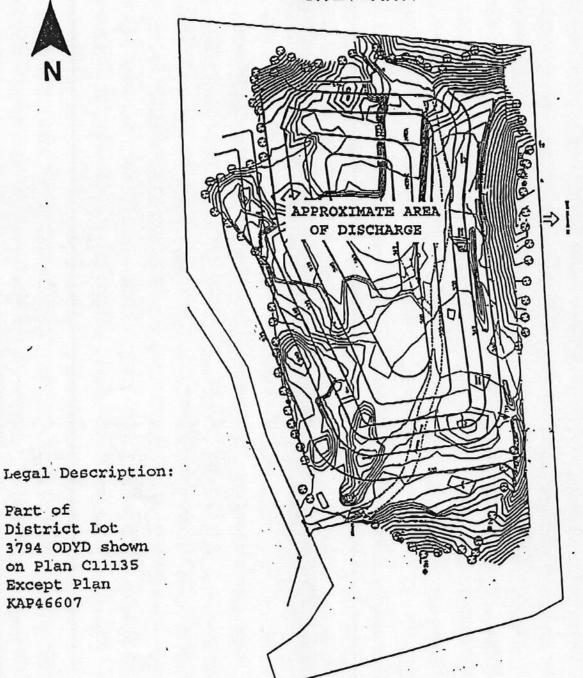
Legal Survey 3.10

Landfills sited on titled land must register a covenant that the property was used for the purpose of waste disposal as a charge against the title to the property as provided for under Section 215.1 of the Land Title Act. Landfills located on crown land are to have a "notation on file" registered that the property was used for the purpose of waste disposal.

3.11 **Buildings and Structures**

The construction of buildings and other structures on landfills containing putrescible wastes is not recommended for a minimum period of 25 years after closure due to concerns about combustible gas and excessive settlement. Such activity will only be considered and /or authorized after an investigation and report by qualified persons. The report is to be submitted for authorization to the Regional Waste Manager prior to initiating construction activities.

Operation of Gas Recovery and Management System 3.12


Where landfill gas recovery and management is required, operation of the system should be considered an integral part of overall landfill management. The system should be planned for from the early design stage of the landfill and arrangements made for its operation for a minimum 25 year life after closure.

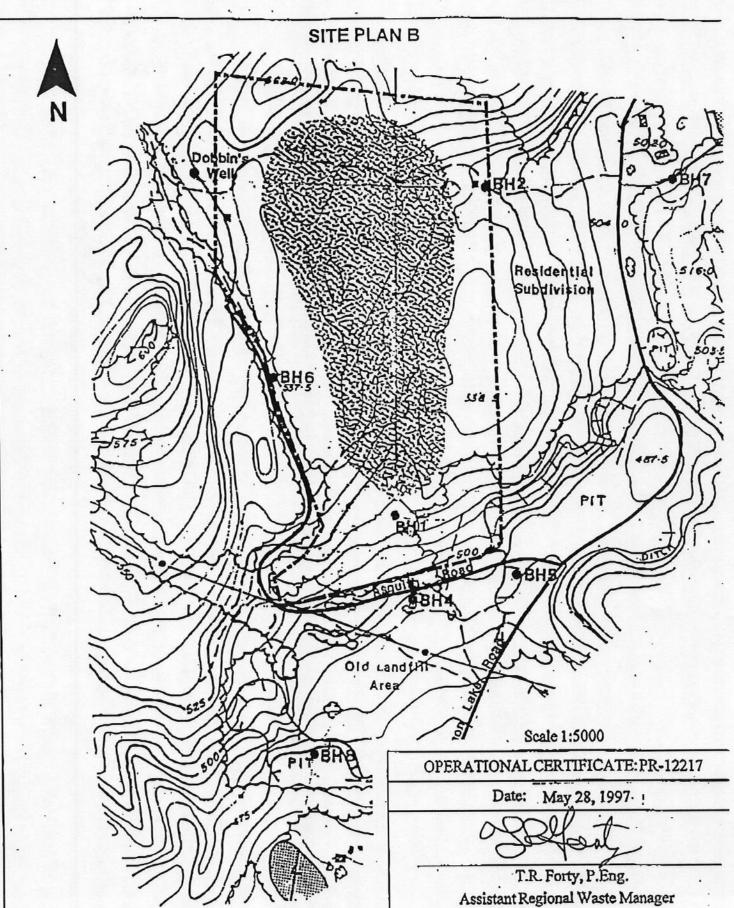
3.13 Operation of Other Control Systems

Operation of other environmental control systems for leachate and run-off as well as monitoring of leachate, groundwater and surface water must be continued during the entire post-closure period unless the early suspension of such operations or monitoring is authorized by the Regional Waste Manager.

SITE PLAN A

Location Map

OPERATIONAL CERTIFICATE: PR-12217


Date: May 28, 1997

T.R. Forty, P.Eng.

Assistant Regional Waste Manager

Part of

District Lot 3794 ODYD shown on Plan C11135 Except Plan KAP46607

010/01017

טחרת_נדטמעדמת/ במח

1107 287 082 T XA4 28:10 8002/01/80

September 6, 2017 Authorization Number: 12217

VIA EMAIL: clarke.kruiswyk@cord.bc.ca

Clarke Kruiswyk

Environmental Services Analyst Regional District of Central Okanagan 1450 KLO Road, Kelowna, BC, V1W 3Z4

Dear Mr. Clarke Kruiswyk:

Re: Environmental Management Act approval of Closure Plan for Westside Landfill (Authorization 122217).

Thank you for your email dated March 10, 2016 and submission of the Westside Landfill Closure Plan dated May 12, 2015 by Golder Associates (Report Number 1406505-003-R-Rev0-5000) (the "Closure Plan"). Ministry review of the Closure Plan indicates that it conforms with current ministry policy (Landfill Criteria, 2nd Edition – 2016), and with respect to final cover, it meets the intent of clause 2.11 (Final Cover) of Operational Certificate (OC) 12217. As such, the Closure Plan is hereby approved in accordance with clause 2.4 of the OC, and the detailed final cover requirements included in clause 2.11 are replaced by those contained in the Closure Plan.

The Ministry further acknowledges that OC 12217 should now be updated to reflect the closed status of the site. The Regional District of Central Okanagan is requested to submit an application to amend the current OC to remove requirements that are no longer relevant, and instead incorporate requirements related to ongoing closure and post-closure activities. For reference, the 2016 Landfill Criteria describe the ministry's expectations pertaining to post closure operation and maintenance including but not limited to those in sections 7.4 (Post Closure Operation and Maintenance), 7.4 (Contaminating Lifespan), 9.0 (Monitorimng Criteria), and 10.3.4 (Closure Plan).

September 6, 2017 Page 2 of 2

Tracking Number: 350916

Application instructions and forms are available on the Ministry's website at: http://www2.gov.bc.ca/gov/content/environment/waste-management/waste-discharge-authorization/guidance-forms-and-fees.

If you have any questions, please contact Roshan D'Souza, Environmental Protection Officer at 250 354 6365 or email Roshan.Dsouza@gov.bc.ca.

Yours truly,

Luc Lachance, P.Eng. For Director, Environmental Management Act 24 April 2023 19127217-004-R-Rev0

APPENDIX B

Tabulated Results (2022 Groundwater and Soil Gas Monitoring Results and Groundwater Elevations)

Table B-1: Groundwater Analytical Results - General and Metals Parameters 2022 Monitoring Report - Westside Landfill West Kelowna, BC

Location	on Relativ	ve to Landfill		Upgra	adient		Within	Landfill			Dow	ngradient (< !	50 m)			Dow	ngradient (> {	50 m)	
Monitoring Well				MW		ВІ	H-1		1-2		BH-4	· · · · · · · · · · · · · · · · · · ·	•	l-5		BH-3	, , , , , , , , , , , , , , , , , , ,	•	H-7
Laboratory ID		BC CSR ¹	Regional	22E0223-08		22E0223-02				22E0223-05	22E0223-01	22K1436-05	22E0223-06	22K1436-06	22E0223-04	22K1436-04	22K1436-01		1
Sample Date	Units	DW	Background	3/May/22	8/Nov/22	3/May/22	8/Nov/22	3/May/22	8/Nov/22	3/May/22	3/May/22	8/Nov/22	3/May/22	8/Nov/22	3/May/22	8/Nov/22	8/Nov/22	3/May/22	8/Nov/22
QA/QC		5 **	Concentration ²	O/May/22	0/1404/22	O/Way/22	FDA	O/Way/22	0/1101/22	FDA	FD	0/1101/22	Onviayizz	0/1404/22	Onviayizz	0/1404/22	FD	O/Way/22	ONTOWEL
General and Nutrient Parameters							1 5/1			1 D/ C	1.0						1.5		
pH	pH units			7.6	8.08	6.79	7.95	6.94	7.52	7.32	7.30	8.05	7.45	8.17	7.12	8.12	8.12	7.3	8.21
Conductivity	µS/cm			1220	1350	1930	1500	2700	2730	2050	2050	2010	957	897	1000	921	922	7.3 1120	1110
Chemical Oxygen Demand	I .			24		65		289		30	31		937 < 20	097	<20		922	<20	
Total Dissolved Solids	mg/L mg/L			697	-	1080	-	1130	- -	1190	1190	-	531	-	560	-	-	657	-
Alkalinity, Total (as CaCO3)	mg/L			576	542	545	474	1330	1310	668	691	586	260	247	374	340	341	482	454
Alkalinity, Phenolphthalein (as CaCO3)	mg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, Bicarbonate (as CaCO3)	mg/L			576	542	545	474	1330	1310	668	691	586	260	247	374	340	341	482	454
Alkalinity, Carbonate (as CaCO3)	mg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Alkalinity, Hydroxide (as CaCO3)	mg/L			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ammonia (as N)	mg/L			<0.050	<0.050	0.24	0.345	0.452	0.442	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Chloride	mg/L	250		73.1	124	279	165	145	145	278	282	279	128	114	86.7	74.3	70.1	63.7	66.8
Nitrate (as N)	mg/L	10		0.458	0.247	0.265	2.78	< 0.010	<0.010	0.607	0.584	0.584	7.62	5.62	3.07	2.65	2.64	3.88	4.24
Sulfate	mg/L	500		16.3	18.2	85	37.2	109	109	83.1	86.3	83.3	46.0	27.9	39.1	34.1	34	40.1	40.4
Total Metals	mg/L	500	l	10.0	10.2	00	01.2	100	100	00.1	00.0	00.0	+0.0	£1.3	JJ. I	U-7. I	U-T	TU. I	70.7
Calcium	ma/l			119		179		295		177	179		96.7		106			119	
	mg/L			79.6	_	60.4	_	295 176.0	_	126	130		30.8	_	106 37	_	_	46.7	-
Magnesium Dissolved Metals	mg/L			13.0	-	00.4		170.0	_	120	130	_	50.0	-	JI	_	-	40.7	
	/I			657	606	726	F01	1500	1210	024	040	000	242	224	200	270	367	404	479
Hardness, Total (as CaCO3)	mg/L	9.5	0.230	657 <0.0050	696 0.025	736 0.0105	501 <0.0050	1500 0.0088	1310 0.0053	921 <0.0050	949 <0.0050	908 <0.0050	343 < 0.0050	331 0.0076	399 <0.0050	370 <0.0050	<0.0050	481 <0.0050	<0.0050
Aluminum	mg/L	9.5 0.006	0.230			<0.00020		1	<0.0003		<0.0050	<0.0050	<0.0030	<0.0076	<0.0050			<0.0050	<0.0050
Antimony	mg/L		0.0027	<0.00020 <0.00050	<0.00020 <0.00050	0.00020	0.0004	<0.00020 0.00210	0.00020	<0.00020 <0.00050	<0.00020	<0.00020		0.00020	0.00020	<0.00020 0.0014	<0.00020	0.00020	
Arsenic	mg/L	0.01	0.013	0.00050		0.00215	0.00226 0.037	0.00210	0.00165	0.0404	0.0394	0.0419	0.00136	0.00123	0.0014		0.00136 0.0104	0.00217	0.00205 0.0208
Barium	mg/L	0.008	0.240	<0.0010	0.0102	<0.00010		1	<0.0000			<0.0010	0.0132			0.0106	<0.00104		
Beryllium Bismuth	mg/L	0.006	0.0013	<0.00010	<0.00010 <0.00010	<0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010	<0.00010 <0.00010	<0.00010 <0.00010
Boron	mg/L	5	0.880	<0.0500	<0.0500	0.925	0.689	0.364	0.387	0.486	0.487	0.493	<0.0500	<0.0500	0.0894	0.0686	0.0623	0.061	0.0579
Cadmium	mg/L	0.005	0.00033	<0.000010	<0.000010	0.923	0.00096	0.000025	<0.000010	0.00089	0.000086	0.493	0.00001	<0.00010	0.0094	0.0000	0.0023	0.0001	0.0079
Calcium	mg/L mg/L	0.003	0.00033	123	133	182	127	308	262	172	178	174	90.5	89.2	102	97.5	95.8	117	120
Chromium	mg/L	6 ^{III} , 0.05 ^{VI}	0.019	< 0.00050	<0.00050	<0.00050	0.00058	0.00138	0.00138	<0.00050	<0.00050	<0.00050	<0.00050	0.00051	< 0.00050	<0.00050	<0.00050	<0.00050	< 0.00050
Cobalt	mg/L	0.001	0.016, 0.020 ³	<0.00030	0.00012	<u>0.00163</u>	0.00038 0.00173	0.00130 0.00213	0.00130 0.00179	<u>0.00131</u>	<u>0.00131</u>	0.00142	<0.00030	<0.00031	0.00013	0.00011	0.00011	0.00056	0.00056
Copper	mg/L	1.5	0.032	0.00371	0.00012	0.00382	0.0073	0.00213	<0.00040	0.00151	0.00131	0.00142	0.00073	0.00065	0.00013	0.00011	0.00011	0.00030	0.00030
Iron	mg/L	Note 4	12	< 0.010	0.033	2.24	0.657	1.41	2.14	< 0.010	<0.0102	<0.0100	< 0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010
Lead	mg/L	0.01	0.0067	<0.0020	0.00026	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.0020	<0.0020	<0.00020	<0.00020	<0.0020	<0.0020	<0.00020
Lithium	mg/L	0.008	0.096	0.0403	0.0414	0.0215	0.0156	0.0217	0.0198	0.0346	0.0344	0.0345	0.0210	0.0198	0.0177	0.0165	0.0156	0.0192	0.0187
Magnesium	mg/L	0.000	0.000	84.9	88	67.9	44.5	178.0	160	119	122	115	28.4	26.3	34.9	30.7	31	45.6	43.4
Manganese	mg/L	Note 4	7.6	0.0045	0.0118	2.85	1.86	6.56	7.3	0.365	0.37	0.435	0.00041	0.00045	0.00072	0.00041	0.00036	0.0795	0.0889
Mercury	mg/L	0.001	0.00057	<0.00010	<0.00010	<0.000010	<0.000010	<0.00010	<0.000010	<0.00010	<0.000010	<0.000010	< 0.000010	<0.00010	<0.00012	<0.00011	<0.000010	<0.000010	<0.000010
Molybdenum	mg/L	0.25	0.045	0.00064	0.00025	0.0008	0.00123	0.0022	0.00255	0.00529	0.00522	0.00636	0.00925	0.00602	0.00381	0.00425	0.00423	0.00216	0.00167
Nickel	mg/L	0.08	0.044	<0.00040	0.00023	0.0119	0.00123	0.0022	0.00200	0.0163	0.0163	0.00000	0.00042	<0.00040	0.00301	0.00423	0.00103	0.00210	0.00107
Phosphorus	mg/L	0.00	3.3 1 1	< 0.050	<0.050	0.087	0.067	0.187	0.213	< 0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	0.087	0.00204
Potassium	mg/L			0.81	0.53	10.90	10.6	2.86	2.94	5.39	5.4	5.68	3.05	2.55	4.34	4.06	3.87	2.68	2.48
Selenium	mg/L	0.01	0.120	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00058	<0.00050	0.00072	0.00056	0.00059	0.001	0.00091
Silicon	mg/L			8.2	6.5	17.2	14.6	26.3	23	11.9	11.7	11	8.2	8.8	13.1	11.6	11.4	14.4	12.8
Silver	mg/L	0.02	0.00098	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Sodium	mg/L	200	1600	43.4	45.3	141	124	124	133	99	99.8	101	62.8	50.8	59.9	52.2	51.8	63.9	61.5
Strontium	mg/L	2.5	47	1.82	2.04	1.57	1.1	3.18	3.27	2.13	2.12	2.22	0.478	0.493	0.746	0.729	0.713	0.842	0.852
Sulfur	mg/L			6.4	6.2	30.9	14.3	41.9	35.8	31.9	32.1	30.2	15.9	9.5	13.9	11.6	11.4	14.1	13.6
Tellurium	mg/L			<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Thallium	mg/L		0.00068	<0.00000	<0.00000	<0.000020	<0.000020	<0.00000	<0.00000	0.00002	0.000021	0.000023	<0.00000	<0.00000	<0.00000	<0.00000	<0.00000	<0.00000	<0.000020
Thorium	mg/L			< 0.00010	<0.00010	< 0.000020	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	< 0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Tin	mg/L	2.5		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium	mg/L	2.0	0.330	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Tungsten	mg/L	0.003	3.555	<0.0010	<0.0000	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0030	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0030	<0.0010
Uranium	mg/L	0.003	<u>0.087</u>	0.00753	0.00662	0.00143	0.001	0.00369	0.00269	<u>0.0265</u>	0.0280	<u>0.0256</u>	0.00594	0.00467	0.00773	0.00631	0.00634	0.0113	0.00951
Vanadium	mg/L	0.02	0.030	< 0.00733	<0.0050	0.00143	<0.001	0.00503	0.00203	0.0031	0.0031	<0.0050	0.0052	0.0055	0.00773	<0.0050	< 0.0050	0.0113	0.00331
Zinc	mg/L	3	0.029	<0.0010	0.0109	<0.0014	<0.0030	0.0034	<0.0034	<0.0040	<0.0031	<0.0030	< 0.0032	<0.0040	< 0.0033	<0.0030	<0.0030	0.0117	<0.0040
Zirconium	mg/L	_	0.020				1					0.00046							
Notes:			I	2.20020		2.0000	2.00.0	1 2.00.20	1.000.0	2.20002		2.000.0	2.00010	2.00010	2.00011	2.00010	2.00010		1100010

Notes:

Land use abbreviations: DW = Drinking Water.

III = Trivalent chromium; VI = hexavalent chromium

QA/QC = Quality Assurance and Quality Control; FDA = Field Duplicate Available; FD = Field Duplicate

< 0.010 Indicates parameter concentration ies less than the laboratory detection limit.

1320 Indicates parameter concentration exceeds the CSR DW standard (but is less than the Interim Provincial Background Concentration for cobalt).

1320 Indicates parameter concentration exceeds the CSR DW standard.

¹Standards shown are from BC Contaminated Sites Regulation (CSR; BC Reg. 375/96, O.C. 1480/96 and M182, as updated [includes amendments up to BC Reg. 179/2021, updated to 7 July 2021]).

² From BC ENV Protocol 9 (V3, 13 May 2021) for the Thompson Okanagan Region. Regional background concentrations were applied only to monitoring wells BH3, BH4, and BH5, as they are located within the Thompson Okanagan Region, while monitoring wells BH1, BH2, BH7, and MW99-2 are located outside the Thompson Okanagan Region boundaries to the north. A substance concentration above the applicable CSR standard, but below the regional background concentration for that substance is not flagged as a BC CSR exceedance.

³ The interim cobalt value of 0.020 mg/L for the remaining regions in the province remains in effect.

⁴ None of the Schedule 2 activities listed in footnotes of CSR Schedule 3.2 standards for iron or manganese were applicable to the Westside Landfill; therefore, there are no applicable CSR DW standards for iron or manganese.

Dete	Monitor	Methane	CO ₂	O_2	H₂S	LEL	Water	Netes
Date	ID	(ppm)	(%)	(%)	(ppm)	(%)	Depth (mbtoc)	Notes
						uary		
	VP12-01 VP07-14	60	1.3	18.7	0	0	1.31	no comple water high
	BH103	155	1.0	20.6	0	0	0	no sample, water high
	VP07-01d	130	0.1	20.9	0	0	0	
	VP07-01s	140	4	20.9	0	0	0	
	BH102	550	7.6	9.3	0	0	0	
	VP15-01	15	0.4	20.9	0	0	No Water	
	VP15-02 VP15-03	40 10	0	20.9	0	0	5.44 7.55	
	VP07-02	50	1.3	19.4	0	0	0	
	VP07-15	140	2.5	15.7	0	0	0	
	BH101s	45	1.2	19.4	0	0	0	
	BH101d	270	3.9	13.5	0	0	0	
	VP07-03 VP07-16	15 65	0.2 1.8	20.9 19.6	0	0	0	
17/Jan/22	VP11-09	25	1.0	20.3	0	0	0	
	VP11-10	140	0.2	20.6	0	0	0	
	MW07-1	35	0.4	20.7	0	0	3.195	
	VP11-01	45	0.5	19.6	0	0	0	
	VP11-02 VP07-05	55 180	1.2	19.1 16	0	0	0	
	VP07-03 VP07-08	50	0.4	19.2	0	0	0	
	VP07-09	35	0.1	19.8	0	0	0	
	VP11-05	260	3	15.7	0	0	0	
	MW99-4	155	3.7	15.8	0	0	6.245	
	MW99-3	35	1.2	19.4	0	0	5.72	
	MW99-2 VP11-04	270 50	1.1	18.5 19	0	0	5.26 0	
	VP11-04 VP11-08	20	0.8	20.6	0	0	0	
	VP11-07	35	1.1	19.9	0	0	0	
	VP11-06	15	0.7	20.9	0	0	0	
						uary		
	VP12-01	80	1.2	18.8	0	0		
	VP07-14 BH103	NA 195	NA 2.9	NA 15.8	NA 0	NA 0	0	no sample, water high
	VP07-01d	30	0.6	20.6	0	0	0	
	VP07-01s	0	0	20.9	0	0	0	
	BH102	50250	14.8	0.6	0	100	0	
	VP15-01	40	1.5	19	0	0		no water level taken
	VP15-02	0	0	0	0	0		no sample back pressure
14/Feb/22	VP15-03 VP07-02	5 75	0 1.4	20.9 19.5	0	0	0	no water level taken
14/1 CD/ZZ	VP07-15	280	5.6	16.2	0	0	0	
	BH101s	95	1.6	17.7	0	0	0	
	BH101d	470	7	9.8	0	0	0	
	VP07-03	45	0.1	20.9	0	0	0	
	VP07-16 VP11-09	80 100	2.8	18.7 16.6	0	0	0	
	VP11-09 VP11-08	25	1.1	20.3	0	0	0	
	VP11-07	55	1	19.8	0	0	0	
	VP11-06	25	0.5	20.9	0	0	0	
	VP11-10	5	0.2	20.9	0	0	0	
	MW07-1	30	0.5	20.6	0	0	3.34	
	VP11-01 VP11-02	20 35	0.5 1.2	20.6 19.3	0	0	0	
	VP11-02 VP07-05	0	0	20.9	0	0	0	
4515	VP07-08	50	0.3	19.2	0	0	0	
15/Feb/22	VP07-09	15	0	20.6	0	0	0	
	VP11-05	185	2.8	17.1	0	0	0	
	MW99-4	230	4.3	15.4	0	0	6.12	
	MW99-3	40	1.2	19.4	0	0	4.49	
	MW99-2 VP11-04	40 70	1.7 1.2	18.8 19.1	0	0	4.89 0	
	vi i1-04	70	1.4	13.1	5	J		

No. No.								Water	
NP12-01 55	Date	Monitor ID	Methane (ppm)	CO ₂ (%)	O ₂ (%)	H₂S (ppm)	LEL (%)	Depth	Notes
VP12-01 65			((1))	()	()			(mbtoc)	
BH103 20 2.9 15.8 0 0 0 0		VP12-01	55	1.4	18.8				
VPDY-OIG 0			85	1.6	19.1	0	0	1.92	
VPD-016 5									
BH102 \$0.250 \$21,7									
VPI5-01									
VP15-02									well dry
VP15-03									·
VP07-15 280 5.4 15.5 0 0 0 0 0 0 0 0 0									·
BH101s		VP07-02	120	0.8	20.1	0	0	0	
BH101d 210									
VP07-03									
VPT-109									
Name									
VP11-10	8/Mar/22								
VP1-01 30 0.5 20.3 0 0 0 0 0 0 0 0 0	0,								
VP1-02						0	0	3.32	
VP07-05									
VP07-08 30									
VP07-09									
VP11-05									
MW99-4 50									
MW99-3 0									
MW99-2 30									
VP11-08									
VP11-07 25 0.9 19.5 0 0 0 0 0 0 0 0 0		VP11-04	0	1	19	0	0	0	
VP11-06									
VP12-01 80									
VP12-01		VP11-06	15	0.6	20.3			0	
VP07-14		VD12.01	90	1.5	10	-		l	
BH103								1 58	no monitorina
VP07-01d									ine membering
BH102 50250 20 0.3 0 100 0 well dry VP15-01 200 2.6 18.3 0 0 0 0 sample back pressure VP15-03 0 0 0 0 0 0 8.87 backpressure VP07-02 10 0 20.9 0 0 0 0 backpressure VP07-15 330 5.5 15.9 0 0 0 0 BH101s 190 2.3 17.8 0 0 0 0 VP07-16 175 2.1 18.6 0 0 0 0 VP07-16 175 2.1 18.6 0 0 0 0 VP11-01 150 0.7 17.9 0 0 0 0 WP07-05 190 2.7 15.9 0 0 0 0 WP07-09 140 0 0 20.2 0 0 0 WP07-09 140 0 0 20.2 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 WP07-09 140 0 0 0 0 0 WP07-09 140 0 0 20.2 1 18.6 0 0 0 0 0 WP07-09 140 0 0 0 0 0 WP07-09 140 0 0 0 0 0 0 0 WP07-09 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			175		20.1	0	0	0	
VP15-01 200 2.6 18.3 0 0 0 well dry		VP07-01s	110	0	20.3	0	0	0	
VP15-02 0 0 0 0 0 0 0 8.87 backpressure VP15-03 0 0 0 0 0 0 0 backpressure VP07-02 10 0 20.9 0 0 0 backpressure VP07-15 330 5.5 15.9 0 0 0 BH101s 190 2.3 17.8 0 0 0 0 BH101d 600 11.6 5.6 0 0 0 0 VP07-03 20 0.1 20.9 0 0 0 VP07-16 175 2.1 18.6 0 0 0 VP07-16 175 2.1 18.6 0 0 0 VP11-09 240 1.9 19.4 0 0 0 VP11-01 110 0.3 20.9 0 0 0 MW07-1 210 1.3 19.3 0 0 0 VP11-01 150 0.7 17.9 0 0 0 VP11-02 160 1.8 19 0 0 0 VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 0 VP07-09 140 0 20.2 0 0 0 0 VP07-09 140 0 20.2 0 0 0 0 WW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 0 VP11-04 180 1.5 18.8 0 0 0 VP11-06 185 4.5 13.6 0 0 0 0 VP11-07 135 1 19.3 0 0 0 0									
VP15-03 0 0 0 0 0 0 0 backpressure VP07-02 10 0 20.9 0 0 0 backpressure VP07-15 330 5.5 15.9 0 0 0 0 BH101s 190 2.3 17.8 0 0 0 0 BH101d 600 11.6 5.6 0 0 0 0 VP07-03 20 0.1 20.9 0 0 0 0 VP07-16 175 2.1 18.6 0 0 0 0 VP07-16 175 2.1 18.6 0 0 0 0 VP11-09 240 1.9 19.4 0 0 0 0 VP11-10 110 0.3 20.9 0 0 0 0 WW07-1 210 1.3 19.3 0 0 3.98 VP11-01 150 0.7 17.9 0 0 0 VP07-05 190 2.7 15.9 0 0 0 0 VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 VP07-09 140 0 20.2 0 0 0 WW99-4 190 2.6 18.2 0 0 5.42 MW99-2 175 1.47 18.9 0 0 0 VP11-04 180 1.5 18.3 0 0 0 0 VP11-04 180 1.5 18.3 0 0 0 0 VP11-08 185 4.5 13.6 0 0 0 0									
VP07-02 10 0 20.9 0 0 0 backpressure VP07-15 330 5.5 15.9 0 0 0 BH101s 190 2.3 17.8 0 0 0 BH101d 600 11.6 5.6 0 0 0 VP07-03 20 0.1 20.9 0 0 0 VP07-16 175 2.1 18.6 0 0 VP11-09 240 1.9 19.4 0 0 0 WP11-10 110 0.3 20.9 0 0 0 WP11-10 150 0.7 17.9 0 0 0 VP11-02 160 1.8 19 0 0 0 VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 VP07-09 140 0 20.2 0 0 0 WP07-09 140 0 5.6 18.6 0 0 WP07-09 140 0 5.6 18.2 0 0 5.42 MW99-4 190 2.6 18.2 0 0 5.42 MW99-2 175 1.47 18.9 0 0 0 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 0									· · · · · · · · · · · · · · · · · · ·
VP07-15 330 5.5 15.9 0 0 0 0 0					_				
BH101s 190 2.3 17.8 0 0 0 0 BH101d 600 11.6 5.6 0 0 0 VP07-03 20 0.1 20.9 0 0 0 VP07-16 175 2.1 18.6 0 0 0 VP11-09 240 1.9 19.4 0 0 0 VP11-10 110 0.3 20.9 0 0 0 MW07-1 210 1.3 19.3 0 0 3.98 VP11-01 150 0.7 17.9 0 0 0 VP11-02 160 1.8 19 0 0 0 VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 VP11-05 210 2.1 18.6 0 0 0 MW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 0 VP11-04 180 1.5 18.3 0 0 0 VP11-05 185 4.5 13.6 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-08 185 4.5 13.6 0 0 0									backpressure
BH101d 600 11.6 5.6 0 0 0 0 0 VP07-03 20 0.1 20.9 0 0 0 0 0 VP07-16 175 2.1 18.6 0 0 0 0 VP07-16 175 2.1 18.6 0 0 0 0 0 VP11-09 240 1.9 19.4 0 0 0 0 VP11-10 110 0.3 20.9 0 0 0 0 0 VP11-10 110 13 19.3 0 0 0 3.98 VP11-01 150 0.7 17.9 0 0 0 0 VP11-02 160 1.8 19 0 0 0 0 VP07-05 190 2.7 15.9 0 0 0 0 VP07-05 190 2.7 15.9 0 0 0 0 VP07-09 140 0 0.5 19.4 0 0 0 0 VP07-09 140 0 0 20.2 0 0 0 0 VP11-05 210 2.1 18.6 0 0 0 0 VP11-04 180 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 0 VP11-08 185 4.5 13.6 0 0 0 0 VP11-08 185 4.5 13.6 0 0 0 0 VP11-08 185 4.5 13.6 0 0 0 0 0 VP11-08 185 4.5 13.6 0 0 0 0 0 VP11-07 135 1 19.3 0 0 0 0 0									
VP07-16									
VP11-09 240 1.9 19.4 0 0 0 VP11-10 110 0.3 20.9 0 0 0 MW07-1 210 1.3 19.3 0 0 3.98 VP11-01 150 0.7 17.9 0 0 0 VP11-02 160 1.8 19 0 0 0 VP07-05 190 2.7 15.9 0 0 0 VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 VP11-05 210 2.1 18.6 0 0 0 MW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 <t< td=""><td></td><td></td><td>20</td><td>0.1</td><td>20.9</td><td>0</td><td>0</td><td>0</td><td></td></t<>			20	0.1	20.9	0	0	0	
VP11-10 110 0.3 20.9 0 0 0 MW07-1 210 1.3 19.3 0 0 3.98 VP11-01 150 0.7 17.9 0 0 0 VP11-02 160 1.8 19 0 0 0 VP07-05 190 2.7 15.9 0 0 0 VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 VP11-05 210 2.1 18.6 0 0 0 MW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185									
MW07-1 210 1.3 19.3 0 0 3.98 VP11-01 150 0.7 17.9 0 0 0 VP11-02 160 1.8 19 0 0 0 VP07-05 190 2.7 15.9 0 0 0 VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 VP11-05 210 2.1 18.6 0 0 0 MW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-07 135	25/Apr/22								
VP11-01 150 0.7 17.9 0 0 0 VP11-02 160 1.8 19 0 0 0 VP07-05 190 2.7 15.9 0 0 0 VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 VP11-05 210 2.1 18.6 0 0 0 MW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-07 135 1 19.3 0 0 0									
VP11-02 160 1.8 19 0 0 0 VP07-05 190 2.7 15.9 0 0 0 VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 VP11-05 210 2.1 18.6 0 0 0 MW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-07 135 1 19.3 0 0 0									
VP07-05 190 2.7 15.9 0 0 0 VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 VP11-05 210 2.1 18.6 0 0 0 MW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-07 135 1 19.3 0 0 0									
VP07-08 160 0.5 19.4 0 0 0 VP07-09 140 0 20.2 0 0 0 VP11-05 210 2.1 18.6 0 0 0 MW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-07 135 1 19.3 0 0 0									
VP07-09 140 0 20.2 0 0 0 VP11-05 210 2.1 18.6 0 0 0 MW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-07 135 1 19.3 0 0 0									
MW99-4 190 2.6 18.2 0 0 5.42 MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-07 135 1 19.3 0 0 0		VP07-09	140			0	0		
MW99-3 200 1.5 18.7 0 0 4.36 MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-07 135 1 19.3 0 0 0									
MW99-2 175 1.47 18.9 0 0 5 VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-07 135 1 19.3 0 0 0									
VP11-04 180 1.5 18.3 0 0 0 VP11-08 185 4.5 13.6 0 0 0 VP11-07 135 1 19.3 0 0 0									
VP11-08 185 4.5 13.6 0 0 0 VP11-07 135 1 19.3 0 0 0									
VP11-07 135 1 19.3 0 0 0									
,		VP11-06	130	0.7	20.2	0	0	0	

Date	Monitor ID	Methane	CO ₂	O ₂	H ₂ S	LEL (%)	Water Depth	Notes
	טו	(ppm)	(%)	(%)	(ppm)		(mbtoc)	
	VP12-01	155	1.6	10.4	ı	ay 💮	ı	ı
	VP12-01 VP07-14	155 175	1.6 2.7	19.4 18.2	0	0	2.1	
	BH103	360	9.9	11.3	0	0	0	
	VP07-01d	120	0.8	19.7	0	0	0	
	VP07-01s	60	0.8	20.4	0	0	0	
	BH102	50250	21.6	0	0	100	0	
	VP15-01	170	2.6	18.6	0	0	0	well dry
	VP15-02	0	0	0	0	0	5.04	no sample back pressure
	VP15-03 VP07-02	0 140	0 1.8	0 19	0	0	8.895 0	no sample backpressure
	VP07-02	290	5.2	16.3	0	0	0	
	BH101s	175	2.8	17.7	0	0	0	
	BH101d	500	14.2	3.7	0	0	0	
	VP07-03	30	0.2	20.9	0	0	0	
	VP07-16	185	3.2	17.6	0	0	0	
2/May/22	VP11-09	180	1.6	19.9	0	0	0	
	VP11-10	75 175	0.4	20.9	0	0	0	
	MW07-1 VP11-01	175 115	1.7 0.8	18.6 20.5	0	0	3.8	
	VP11-01	135	1.5	19.3	0	0	0	
	VP07-05	40	0.2	20.9	0	0	0	
	VP07-08	120	0.8	19.9	0	0	0	
	VP07-09	90	0.2	20.6	0	0	0	
	VP11-05	180	1.8	20	0	0	0	
	MW99-4	195	2.3	19.1	0	0	5.42	
	MW99-3 MW99-2	180 200	1.6 1.9	19.2 18.5	0	0	4.38 4.88	
	VP11-04	170	1.9	18.7	0	0	0	
	VP11-04	270	5.4	13.2	0	0	0	
	VP11-07	105	1.1	20.2	0	0	0	
	VP11-06	60	0.7	20.4	0	0	0	
				_	Ju	ne		
	BH103	40	5.9	15.1	0	0		
	BH102	1300	15	6.1	0	2	0	
	VP15-01 VP15-02	136 NA	2.6 NA	17.8 NA	0 NA	0 NA	0 5.06	well dry no sample back pressure
13/Jun/22	VP15-02 VP15-03	30	0	20.9	0	0	8.955	backpressure
10/04/1/22	VP11-09	90	1.5	18.7	0	0	0	pacitif recent
	VP11-08	290	7.2	12.2	0	0	0	
	VP11-07	90	1.6	18.5	0	0	0	
	VP11-06	70	1.3	18.9	0	0	0	
	D11400	200		40.7		ıly	ı	
	BH103	220	5.5	16.7	0	0	0	
	BH102 VP15-01	550 160	8.7 2.2	13.5 19	0	0	0	well dry
	VP15-02	NA	NA	NA	NA NA	NA NA	5.055	no sample back pressure
11/Jul/22	VP15-03	130	0	20.8	0	0	8.965	backpressure
	VP11-09	165	1.5	19.8	0	0	0	
	VP11-08	360	10	11.1	0	0	0	
	VP11-07	130	1.9	19	0	0	0	
	VP11-06	120	1.4	19.7	0	0	0	
	VP12-01				Auç	gust		could not locate
	VP07-14	165	2.4	18.8	0	0	0	well dry
	BH103	165	3.1	18.5	0	0	†	,
	VP07-01d		1.7	19.4	0	0		
	VP07-01s	135	0.6	20.7	0	0		
	BH102	155	1.8	19	0	0		
	VP15-01	160 NA	1.4	19.4	0	0	0	well dry
8/Aug/22	VP15-02 VP15-03	NA 75	NA 0	NA 20.9	NA 0	NA 0	5.07 8.99	no sample back pressure backpressure
Jirnugizz	VP15-03 VP07-02	130	1.5	19.3	0	0	0.33	pacity resource
	VP07-15	175	2.5	18.5	0	0	<u> </u>	
	BH101s	190	3.3	18.2	0	0	<u>L</u> _	
	BH101d	NA	NA	NA	NA	NA		did not sample - wasp nest inside
	VP07-03	90	0.9	20.4	0	0		
	VP07-16	110	2.9	18	0	0		
	VP11-09	180 165	1.1	19.8	0	0		
	VP11-10	165	0.3	20.7	0	0		

No.	Date	Monitor ID	Methane (ppm)	CO ₂ (%)	O ₂ (%)	H₂S (ppm)	LEL (%)	Water Depth (mbtoc)	Notes
VP1-1-01 145						Aug	gust	(IIIbtoc)	
VP1-02 180 1.2 19.5 0 0 0		MW07-1	165	0.7	18.3	0	0	4.31	
VPD7-OS 14-0		VP11-01	145	0.4	20.7	0	0		
VP07-08 180 0.5 18.7 0 0		VP11-02	180	1.2	19.5	0	0		
VP07-09 190 1 12 19.8 0 0 0			140		18.9	0	0		
BAUGY 145									
MW99-1 140 19 18.9 0 0 5.81									
MW996-3 250 1.9 18.9 0 0 6.518	8/Aug/22								
MM9982 140	J. J.								
VP11-04 195									
VP11-08 320 7.6 20.8 0 0								5.165	
VP11-06									
VP11-06 120									
BH103									
BH102		VI II-00	120	1	10.0				
BH102		BH103	125	1 9	19			Ī	
VP15-01 95									
VP15-02									
12/Sep/22									purge back pressure
VP11-09	12/Sep/22								<u>'</u>
VP11-08	·								
VP11-07 95									
BH103		VP11-07			20.2	0	0		
BH103		VP11-06	80	1	20.3	0	0		
BH102					•	Oct	ober	•	
3/Oct/22 VP15-01 80 1.2 19.7 0 0		BH103	85	1.6	19.8	0	0		
VP15-02		BH102	100	1	19.7	0	0		
3/Oct/22		VP15-01	80	1.2	19.7	0	0		
VP11-09		VP15-02	180	0	20.8	0	0		purge back pressure
VP11-08 350	3/Oct/22		20	0	20.8	0	0		
VP11-07									
VP11-06				7.3					
November November									
VP11-05		VP11-06	165	0.8	19.6	_			
MW99-4		\ D 4 4 0 5		0.7	1 40			ı	
MW99-3								0.05	
Nov-22									
05-Nov-22									
VP11-08	05-Nov-22							3.323	
Note	00-1107-22								
Note									
Net									
BH-1									
BH-3			-	-				2.7	
BH-5 BH-7 A.22 BH-2 BH-2 BH-2 BH-101 BH-102 BH-103									
BH-7		BH-4						3.32	
BH-2		BH-5						11.63	
MW99-2		BH-7						4.22	
VP12-01		BH-2						3.55	
VP07-14		MW99-2						5.465	
08-Nov-22 BH103 95 1.2 19.2 0 0 VP07-01d 130 1.9 18.5 0 0 VP07-01s 40 0.5 19.7 0 0 BH102 250 1.6 19 0 0 VP15-01 90 1.2 19.2 0 0 VP15-02									
08-Nov-22 VP07-01d 130 1.9 18.5 0 0 VP07-01s 40 0.5 19.7 0 0 BH102 250 1.6 19 0 0 VP15-01 90 1.2 19.2 0 0 VP15-02 VP15-02 no sample back pressure VP07-02 105 1.3 19 0 0 VP07-15 95 1.3 19.7 0 0 BH101s 90 1.2 20 0 0 BH101d 230 4.7 17.3 0 0									no sample could not find covered in snow
VP07-01s 40 0.5 19.7 0 0 BH102 250 1.6 19 0 0 VP15-01 90 1.2 19.2 0 0 VP15-02 0 0 0 0 0 VP15-03 70 0 20.7 0 0 0 0 VP07-02 105 1.3 19 0 0 0 0 0 VP07-15 95 1.3 19.7 0									
VP07-01s 40 0.5 19.7 0 0 BH102 250 1.6 19 0 0 VP15-01 90 1.2 19.2 0 0 VP15-02 0 0 0 0 0 VP15-03 70 0 20.7 0 0 0 0 VP07-02 105 1.3 19 0 <td>08-Nov-22</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	08-Nov-22								
VP15-01 90 1.2 19.2 0 0 VP15-02 no sample back pressure VP15-03 70 0 20.7 0 0 VP07-02 105 1.3 19 0 0 VP07-15 95 1.3 19.7 0 0 BH101s 90 1.2 20 0 0 BH101d 230 4.7 17.3 0 0									
VP15-02 no sample back pressure VP15-03 70 0 20.7 0 0 VP07-02 105 1.3 19 0 0 VP07-15 95 1.3 19.7 0 0 BH101s 90 1.2 20 0 0 BH101d 230 4.7 17.3 0 0									
VP15-03 70 0 20.7 0 0 VP07-02 105 1.3 19 0 0 VP07-15 95 1.3 19.7 0 0 BH101s 90 1.2 20 0 0 BH101d 230 4.7 17.3 0 0			90	1.2	19.2	U	U		no comple back processes
VP07-02 105 1.3 19 0 0 VP07-15 95 1.3 19.7 0 0 BH101s 90 1.2 20 0 0 BH101d 230 4.7 17.3 0 0			70	^	20.7	^			no sample back pressure
VP07-15 95 1.3 19.7 0 0 BH101s 90 1.2 20 0 0 BH101d 230 4.7 17.3 0 0									
BH101s 90 1.2 20 0 0 BH101d 230 4.7 17.3 0 0									
BH101d 230 4.7 17.3 0 0								+	
								1	
■ VPU7-U3 50 U.5 20.6 U U U I		VP07-03	50	0.5	20.6	0	0	<u> </u>	
VP07-16 250 2.5 20.9 0 0									

Date	Monitor ID	Methane (ppm)	CO ₂ (%)	O ₂ (%)	H₂S (ppm)	LEL (%)	Water Depth (mbtoc)	Notes
					Nove	mber		
	VP11-09	55	8.0	20.4	0	0		
	VP11-10	20	0.2	20.9	0	0		
	MW07-1	135	1.5	19.9	0	0	4.29	
10-Nov-22	VP11-01	80	0.1	20.9	0	0		
	VP07-05							no sample could not find covered in snow
	VP07-08	135	0.8	18.7	0	0		
	VP07-09	70	0.6	18.5	0	0		
					Dece	mber		
	VP12-01							no sample could not find covered in snow
	VP07-14							no sample could not find covered in snow
	BH103	85	1.2	19.6	0	0		
	VP07-01d	10	1.5	19.7	0	0		
	VP07-01s	90	0.6	20.9	0	0		
	BH102	185	2.5	18.5	0	0		
	VP15-01	125	1.3	20	0	0	0	
	VP15-02						0	no sample back pressure
	VP15-03	55	0	20.9	0	0	9	
	VP07-02	130	1.4	20	0	0		
	VP07-15	165	1.8	19.9	0	0		
	BH101s	135	1.7	19.4	0	0		
	BH101d	330	7.8	14.9	0	0		
	VP07-03	50	0.4	20.9	0	0		
	VP07-16	160	2.4	19.7	0	0		
5/Dec/22	VP11-09	75	0.9	20.4	0	0		
	VP11-10	0	0.1	20.9	0	0		
	MW07-1	85	1.4	19.9	0	0	4.085	
	VP11-01	20	0.1	20.9	0	0		
	VP11-02	65	0.8	20.8	0	0		
	VP07-05	55	0.6	20.8	0	0		
	VP07-08	55	0.6	19.7	0	0		
	VP07-09	55	0.4	18.1	0	0		
	VP11-05	140	2.1	19	0	0		
	MW99-4	240	3.7	17	0	0	6.27	
	MW99-3	95	1	19.8	0	0	4.765	
	MW99-2	135	1.1	20.1	0	0	5.405	
	VP11-04	125	1.3	19	0	0		
	VP11-08	20	0.2	20.7	0	0		
	VP11-07	80	1.4	19.6	0	0		
	VP11-06	0	0.9	20.1	0	0		

Notes:

ppm = parts per million; % = percent; mbtoc = meters below top of casing

Page 7 of 7

Table B-3: Groundwater Elevations 2022 Monitoring Report - Westside Landfill West Kelowna, BC

Monitor	BI	H-1	Bi	H-2	Bi	1-3	BI	H-4	BI	H-5	Bl	1-7	MW	99-2	MW	99-3	MV	/99-4
Top of Pipe Elevation ¹ (masl)	519	9.31	526	5.92	47	1.93	494	4.59	488	3.75	500	0.16	546	5.37	538	3.25	53	6.25
Date	Depth to Water (mbtop)	Elevation (masl)	Depth to Water (mbtop)	Elevation (masl)	Depth to Water (mbtop)	Elevation (masl)	Depth to Water (mbtop)	Elevation (masl)	Depth to Water (mbtop)	Elevation (masl)								
17-Jan-22	-	-	-	-	-	-	-	-	-	-	-	-	5.26	541.11	5.720	532.53	6.245	530.01
15-Feb-22	-	-	-	-	-	-	-	-	-	-	-	-	4.890	541.48	4.380	533.87	6.120	530.13
08-Mar-22	_	-	-	-	-	-	-	-	-	-	-	-	3.555	542.81	4.200	534.05	5.375	530.88
25-Apr-22	-	-	-	-	-	-	-	-	-	-	-	-	5.000	541.37	4.360	533.89	5.420	530.83
02-May-22	-	-	-	-	-	-	-	-	-	-	-	-	4.880	541.49	4.380	533.87	5.420	530.83
03-May-22	2.800	516.51	4.47	522.46	14.42	457.51	2.265	492.33	11.63	477.12	4.25	495.91	4.864	541.50	-	-	-	-
08-Aug-22	-	-	-	-	-	-	-	-	-	-	-	-	5.165	541.20	4.565	533.69	5.810	530.44
08-Nov-22	2.70	516.61	3.55	523.37	14.39	457.54	3.32	491.27	11.63	477.12	4.22	495.94	5.525	540.84	4.685	533.57	6.350	529.90
05-Dec-22													5.405	540.96	4.765	533.49	6.270	529.98

Notes:

¹ The top of pipe elevations shown were surveyed in 2015 by AllTerra Land Surveying Ltd. masl = meters above sea level; mbtop = meters below top of pipe

[&]quot;-" indicates that no water level was recorded or no elevation was calculated.

24 April 2023 19127217-004-R-Rev0

APPENDIX C

Laboratory Certificate Analysis (COA) Reports

CERTIFICATE OF ANALYSIS

REPORTED TO Regional District of Central Okanagan

1450 KLO Road

KELOWNA, BC V1W 3Z4

ATTENTION Angela Lambrecht WORK ORDER 22E0223

PO NUMBER 60022 RECEIVED / TEMP 2022-05-03 11:30 / 12.6°C

 PROJECT
 Westside Landfill
 REPORTED
 2022-05-10 13:24

 PROJECT INFO
 041440062
 COC NUMBER
 44677.53661

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

 $^{\circ}$

We've Got Chemistry

Ahead of the Curve

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at bwhitehead@caro.ca

Authorized By:

Brent Whitehead Account Manager M what

REPORTED TO	Regional District of Central Okanagan	WORK ORDER	22E0223
PROJECT	Westside Landfill	REPORTED	2022-05-10 13:24

Analyte	Result	RL	Units	Analyzed	Qualifier
Duplicate (22E0223-01) Matrix: Wa	ter Sampled: 2022-05-03 08:4	5			
Anions					
Chloride	282	0.10	mg/L	2022-05-04	
Nitrate (as N)	0.584	0.010		2022-05-04	
Sulfate	86.3		mg/L	2022-05-04	
Calculated Parameters					
Hardness, Total (as CaCO3)	949	0.500	mg/L	N/A	
Dissolved Metals					
Aluminum, dissolved	< 0.0050	0.0050	ma/l	2022-05-04	
Antimony, dissolved	< 0.00020	0.00020		2022-05-04	
Arsenic, dissolved	< 0.00050	0.00020		2022-05-04	
Barium, dissolved	0.0394	0.0050		2022-05-04	
Beryllium, dissolved	< 0.00010	0.00010		2022-05-04	
Bismuth, dissolved	< 0.00010	0.00010		2022-05-04	
Boron, dissolved	0.487	0.0500		2022-05-04	
Cadmium, dissolved	0.000086	0.000010		2022-05-04	
Calcium, dissolved	178		mg/L	2022-05-04	
	< 0.00050	0.00050		2022-05-04	
Chalt dissolved		0.00030			
Copper dissolved	0.00131 0.00162	0.00010		2022-05-04	
Copper, dissolved				2022-05-04	
Iron, dissolved	< 0.010	0.010		2022-05-04	
Lead, dissolved	< 0.00020	0.00020		2022-05-04	
Lithium, dissolved	0.0344	0.00010		2022-05-04	
Magnesium, dissolved	122	0.010		2022-05-04	
Manganese, dissolved	0.370	0.00020		2022-05-04	
Mercury, dissolved	< 0.000010	0.000010		2022-05-07	
Molybdenum, dissolved	0.00522	0.00010		2022-05-04	
Nickel, dissolved	0.0163	0.00040		2022-05-04	
Phosphorus, dissolved	< 0.050	0.050		2022-05-04	
Potassium, dissolved	5.40		mg/L	2022-05-04	
Selenium, dissolved	< 0.00050	0.00050		2022-05-04	
Silicon, dissolved	11.7		mg/L	2022-05-04	
Silver, dissolved	< 0.000050	0.000050		2022-05-04	
Sodium, dissolved	99.8		mg/L	2022-05-04	
Strontium, dissolved	2.12	0.0010		2022-05-04	
Sulfur, dissolved	32.1		mg/L	2022-05-04	
Tellurium, dissolved	< 0.00050	0.00050		2022-05-04	
Thallium, dissolved	0.000021	0.000020		2022-05-04	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2022-05-04	
Tin, dissolved	< 0.00020	0.00020		2022-05-04	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2022-05-04	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2022-05-04	
Uranium, dissolved	0.0280	0.000020	mg/L	2022-05-04	
Vanadium, dissolved	0.0031	0.0050	ma/l	2022-05- <u>04</u>	

	egional District of Centra /estside Landfill	al Okanagan			WORK ORDER REPORTED	22E0223 2022-05-	10 13:24
Analyte		Result		RL	Units	Analyzed	Qualifier
Duplicate (22E0223-	01) Matrix: Water San	npled: 2022-0	5-03 08:45, Continued				
Dissolved Metals, Con	tinued						
Zinc, dissolved		< 0.0040		0.0040	mg/L	2022-05-04	
Zirconium, dissolved		0.00051		0.00010	mg/L	2022-05-04	
General Parameters							
Alkalinity, Total (as Ca	CO3)	691		1.0	mg/L	2022-05-05	
Alkalinity, Phenolphtha	· · · · · · · · · · · · · · · · · · ·	< 1.0			mg/L	2022-05-05	
Alkalinity, Bicarbonate		691			mg/L	2022-05-05	
Alkalinity, Carbonate (· · · · · · · · · · · · · · · · · · ·	< 1.0			mg/L	2022-05-05	
Alkalinity, Hydroxide (· · · · · · · · · · · · · · · · · · ·	< 1.0			mg/L	2022-05-05	
Ammonia, Total (as N)	< 0.050		0.050	mg/L	2022-05-06	
Chemical Oxygen Der	mand	31		20	mg/L	2022-05-04	
Conductivity (EC)		2050		2.0	μS/cm	2022-05-05	
pН		7.30		0.10	pH units	2022-05-05	HT2
Solids, Total Dissolved	t	1190		15	mg/L	2022-05-09	
Total Metals							
Calcium, total		179		0.20	mg/L	2022-05-04	
Magnesium, total		130		0.010		2022-05-04	
Anions							
Chloride		279			mg/L	2022-05-04	
Nitrate (as N)		0.265		0.010		2022-05-04	
Sulfate		85.0		1.0	mg/L	2022-05-04	
Calculated Parameters	;						
Hardness, Total (as C	aCO3)	736		0.500	mg/L	N/A	
Dissolved Metals							
Aluminum, dissolved		0.0105		0.0050	mg/L	2022-05-04	
Antimony, dissolved		< 0.00020		0.00020		2022-05-04	
Arsenic, dissolved		0.00215		0.00050		2022-05-04	
Barium, dissolved		0.0455		0.0050	mg/L	2022-05-04	
Beryllium, dissolved		< 0.00010		0.00010		2022-05-04	
Bismuth, dissolved		< 0.00010		0.00010	mg/L	2022-05-04	
Boron, dissolved		0.925		0.0500	mg/L	2022-05-04	
Cadmium, dissolved		0.000080		0.000010	mg/L	2022-05-04	
Calcium, dissolved		182		0.20	mg/L	2022-05-04	
Chromium, dissolved		< 0.00050		0.00050	mg/L	2022-05-04	
Cobalt, dissolved		0.00163		0.00010	mg/L	2022-05-04	
Copper, dissolved		0.00382		0.00040	mg/L	2022-05-04	
Iron, dissolved		2.24		0.010		2022-05-04	
Lead, dissolved		< 0.00020		0.00020	mg/L	2022-05-04	
							Page 3 of 2

REPORTED TO Regional District of Central Okanagan **WORK ORDER**

22E0223 Westside Landfill 2022-05-10 13:24 **PROJECT** REPORTED

Analyte	Result	RL	Units	Analyzed	Qualifie
BH1 (22E0223-02) Matrix: Water Samp	eled: 2022-05-03 09:22, Cor	itinued			
Dissolved Metals, Continued					
Lithium, dissolved	0.0215	0.00010	mg/L	2022-05-04	
Magnesium, dissolved	67.9	0.010	mg/L	2022-05-04	
Manganese, dissolved	2.85	0.00020	mg/L	2022-05-04	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2022-05-07	
Molybdenum, dissolved	0.00080	0.00010	mg/L	2022-05-04	
Nickel, dissolved	0.0119	0.00040	mg/L	2022-05-04	
Phosphorus, dissolved	0.087	0.050	mg/L	2022-05-04	
Potassium, dissolved	10.9	0.10	mg/L	2022-05-04	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2022-05-04	
Silicon, dissolved	17.2	1.0	mg/L	2022-05-04	
Silver, dissolved	< 0.000050	0.000050	mg/L	2022-05-04	
Sodium, dissolved	141	0.10	mg/L	2022-05-04	
Strontium, dissolved	1.57	0.0010	mg/L	2022-05-04	
Sulfur, dissolved	30.9	3.0		2022-05-04	
Tellurium, dissolved	< 0.00050	0.00050		2022-05-04	
Thallium, dissolved	< 0.000020	0.000020		2022-05-04	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2022-05-04	
Tin, dissolved	< 0.00020	0.00020	mg/L	2022-05-04	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2022-05-04	
Tungsten, dissolved	< 0.0010	0.0010		2022-05-04	
Uranium, dissolved	0.00143	0.000020	mg/L	2022-05-04	
Vanadium, dissolved	0.0014	0.0050	mg/L	2022-05-04	
Zinc, dissolved	< 0.0040	0.0040		2022-05-04	
Zirconium, dissolved	0.00080	0.00010		2022-05-04	
General Parameters					
Alkalinity, Total (as CaCO3)	545	1.0	mg/L	2022-05-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2022-05-05	
Alkalinity, Bicarbonate (as CaCO3)	545		mg/L	2022-05-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2022-05-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2022-05-05	
Ammonia, Total (as N)	0.240	0.050		2022-05-06	
Chemical Oxygen Demand	65		mg/L	2022-05-04	
Conductivity (EC)	1930		μS/cm	2022-05-05	
pH	6.79		pH units	2022-05-05	HT2
Solids, Total Dissolved	1080		mg/L	2022-05-09	
Total Metals					
Calcium, total	179	0.20	mg/L	2022-05-04	
Magnesium, total	60.4	0.010		2022-05-04	

BH2 (22E0223-03) | Matrix: Water | Sampled: 2022-05-03 10:40

REPORTED TO	Regional District of Central Okanagan	WORK ORDER	22E0223
PROJECT	Westside Landfill	REPORTED	2022-05-10 13:24

Analyte	Result	RL	Units	Analyzed	Qualifie
BH2 (22E0223-03) Matrix: Water S	ampled: 2022-05-03 10:40, Cor	ntinued			
Anions					
Chloride	145	0.10	mg/L	2022-05-06	
Nitrate (as N)	< 0.010	0.010		2022-05-06	
Sulfate	109		mg/L	2022-05-06	
Calculated Parameters					
Hardness, Total (as CaCO3)	1500	0.500	mg/L	N/A	
Dissolved Metals					
Aluminum, dissolved	0.0088	0.0050	mg/L	2022-05-04	
Antimony, dissolved	< 0.00020	0.00020		2022-05-04	
Arsenic, dissolved	0.00210	0.00050		2022-05-04	
Barium, dissolved	0.0111	0.0050		2022-05-04	
Beryllium, dissolved	< 0.00010	0.00010		2022-05-04	
Bismuth, dissolved	< 0.00010	0.00010		2022-05-04	
Boron, dissolved	0.364	0.0500		2022-05-04	
Cadmium, dissolved	0.00025	0.000010		2022-05-04	
Calcium, dissolved	308		mg/L	2022-05-04	
Chromium, dissolved	0.00138	0.00050		2022-05-04	
Cobalt, dissolved	0.00213	0.00010		2022-05-04	
Copper, dissolved	0.00048	0.00040		2022-05-04	
Iron, dissolved	1.41	0.010		2022-05-04	
Lead, dissolved	< 0.00020	0.00020		2022-05-04	
Lithium, dissolved	0.0217	0.00010		2022-05-04	
Magnesium, dissolved	178	0.010		2022-05-04	
Manganese, dissolved	6.56	0.00020		2022-05-04	
Mercury, dissolved	< 0.000010	0.000010		2022-05-07	
Molybdenum, dissolved	0.00220	0.00010		2022-05-04	
Nickel, dissolved	0.0128	0.00040		2022-05-04	
Phosphorus, dissolved	0.187	0.050		2022-05-04	
Potassium, dissolved	2.86		mg/L	2022-05-04	
Selenium, dissolved	< 0.00050	0.00050		2022-05-04	
Silicon, dissolved	26.3		mg/L	2022-05-04	
Silver, dissolved	< 0.000050	0.000050		2022-05-04	
Sodium, dissolved	124		mg/L	2022-05-04	
Strontium, dissolved					
Sulfur, dissolved	3.18	0.0010		2022-05-04	
· · · · · · · · · · · · · · · · · · ·	41.9		mg/L	2022-05-04	
Tellurium, dissolved	< 0.00050	0.00050 0.000020		2022-05-04	
Thallium, dissolved Thorium, dissolved	< 0.000020	0.00010		2022-05-04	
·	< 0.00010 < 0.00020	0.00010		2022-05-04	
Tin, dissolved Titanium, dissolved				2022-05-04	
<u> </u>	< 0.0050	0.0050		2022-05-04	
Tungsten, dissolved	< 0.0010	0.0010		2022-05-04	
Uranium, dissolved	0.00369	0.000020		2022-05-04	
Vanadium, dissolved	0.0054	0.0050	rng/L	2022-05-04	Page 5 o

REPORTED TO Regional District of C PROJECT Westside Landfill		nal District of Central Okanagan side Landfill		WORK ORDER REPORTED	22E0223 2022-05-10 13:24		
Analyte		Result	RL	Units	Analyzed	Qualifier	
BH2 (22E0223-03)	Matrix: Water Samp	led: 2022-05-03 10:40, Co	ntinued				
Dissolved Metals, C	ontinued						
Zinc, dissolved		0.0045	0.0040	mg/L	2022-05-04		
Zirconium, dissolve	ed	0.00425	0.00010	mg/L	2022-05-04		
General Parameters							
Alkalinity, Total (as	CaCO3)	1330	1.0	mg/L	2022-05-05		
	nthalein (as CaCO3)	< 1.0		mg/L	2022-05-05		
Alkalinity, Bicarbona		1330		mg/L	2022-05-05		
Alkalinity, Carbonat		< 1.0		mg/L	2022-05-05		
Alkalinity, Hydroxide		< 1.0		mg/L	2022-05-05		
Ammonia, Total (as	· ,	0.452	0.050		2022-05-06		
Chemical Oxygen [<u> </u>	289		mg/L	2022-05-04		
Conductivity (EC)	Schland	2700		μS/cm	2022-05-05		
pH		6.94		pH units	2022-05-05	HT2	
Solids, Total Dissol	ved	1130		mg/L	2022-05-09	1112	
BH3 (22E0223-04)	Matrix: Water Samp	led: 2022-05-03 08:18					
Anions							
Chloride		86.7	0.10	mg/L	2022-05-04		
Nitrate (as N)		3.07	0.010	mg/L	2022-05-04		
Sulfate		39.1	1.0	mg/L	2022-05-04		
Calculated Paramete	ers						
Hardness, Total (as	CaCO3)	399	0.500	mg/L	N/A		
Dissolved Metals							
Aluminum, dissolve	ed	< 0.0050	0.0050	ma/l	2022-05-04		
Antimony, dissolved		< 0.00020	0.00020		2022-05-04		
Arsenic, dissolved	<u> </u>	0.00140	0.00050		2022-05-04		
Barium, dissolved		0.0126	0.0050		2022-05-04		
Beryllium, dissolved		< 0.00010	0.00010		2022-05-04		
Bismuth, dissolved		< 0.00010	0.00010		2022-05-04		
Boron, dissolved		0.0894	0.0500		2022-05-04		
Cadmium, dissolve	d	0.00017	0.000010		2022-05-04		
Calcium, dissolved		102		mg/L	2022-05-04		
Chromium, dissolved		< 0.00050	0.00050		2022-05-04		
Cobalt, dissolved		0.00030	0.00030		2022-05-04		
Copper, dissolved		0.00013	0.00040		2022-05-04		
Iron, dissolved		< 0.010		mg/L	2022-05-04		
Lead, dissolved		< 0.00020	0.00020		2022-05-04		
		3.30020	0.00020	9, =		Page 6 of	

REPORTED TO Regional District of Central Okanagan

PROJECT Westside Landfill

WORK ORDER

22E0223 2022-05-10 13:24

Analyte Result BH3 (22E0223-04) Matrix: Water Sampled: 2022-05-03 08:18, Continued	RL	Units	Analyzed	Qualifie
BH3 (22E0223-04) Matrix: Water Sampled: 2022-05-03 08:18, Continued				
Dissolved Metals, Continued				
Lithium, dissolved 0.0177	0.00010	mg/L	2022-05-04	
Magnesium, dissolved 34.9	0.010	mg/L	2022-05-04	
Manganese, dissolved 0.00072	0.00020	mg/L	2022-05-04	
Mercury, dissolved < 0.000010	0.000010	mg/L	2022-05-07	
Molybdenum, dissolved 0.00381	0.00010	mg/L	2022-05-04	
Nickel, dissolved 0.00126	0.00040	mg/L	2022-05-04	
Phosphorus, dissolved < 0.050	0.050	mg/L	2022-05-04	
Potassium, dissolved 4.34	0.10	mg/L	2022-05-04	
Selenium, dissolved 0.00072	0.00050	mg/L	2022-05-04	
Silicon, dissolved 13.1	1.0	mg/L	2022-05-04	
Silver, dissolved < 0.000050	0.000050	mg/L	2022-05-04	
Sodium, dissolved 59.9	0.10	mg/L	2022-05-04	
Strontium, dissolved 0.746	0.0010	mg/L	2022-05-04	
Sulfur, dissolved 13.9	3.0	mg/L	2022-05-04	
Tellurium, dissolved < 0.00050	0.00050	mg/L	2022-05-04	
Thallium, dissolved < 0.000020	0.000020	mg/L	2022-05-04	
Thorium, dissolved < 0.00010	0.00010	mg/L	2022-05-04	
Tin, dissolved < 0.00020	0.00020	mg/L	2022-05-04	
Titanium, dissolved < 0.0050	0.0050	mg/L	2022-05-04	
Tungsten, dissolved < 0.0010	0.0010	mg/L	2022-05-04	
Uranium, dissolved 0.00773	0.000020	mg/L	2022-05-04	
Vanadium, dissolved 0.0033	0.0050	mg/L	2022-05-04	
Zinc, dissolved < 0.0040	0.0040	mg/L	2022-05-04	
Zirconium, dissolved 0.00011	0.00010	mg/L	2022-05-04	
General Parameters				
Alkalinity, Total (as CaCO3) 374	1.0	mg/L	2022-05-05	
Alkalinity, Phenolphthalein (as CaCO3) < 1.0	1.0	mg/L	2022-05-05	
Alkalinity, Bicarbonate (as CaCO3) 374	1.0	mg/L	2022-05-05	
Alkalinity, Carbonate (as CaCO3) < 1.0	1.0	mg/L	2022-05-05	
Alkalinity, Hydroxide (as CaCO3) < 1.0	1.0	mg/L	2022-05-05	
Ammonia, Total (as N) < 0.050	0.050	mg/L	2022-05-06	
Chemical Oxygen Demand < 20	20	mg/L	2022-05-04	
Conductivity (EC) 1000	2.0	μS/cm	2022-05-05	
pH 7.12	0.10	pH units	2022-05-05	HT2
Solids, Total Dissolved 560	15	mg/L	2022-05-09	
Total Metals				
Calcium, total 106	0.20	mg/L	2022-05-04	
Magnesium, total 37.0	0.010	mg/L	2022-05-04	

BH4 (22E0223-05) | Matrix: Water | Sampled: 2022-05-03 08:43

REPORTED TO	Regional District of Central Okanagan	WORK ORDER	22E0223
PROJECT	Westside Landfill	REPORTED	2022-05-10 13:24

Analyte	Result	RL	Units	Analyzed	Qualifier
BH4 (22E0223-05) Matrix: Water S	Sampled: 2022-05-03 08:43, Co	ntinued			
Anions					
Chloride	278	0.10	mg/L	2022-05-05	
Nitrate (as N)	0.607	0.010		2022-05-05	
Sulfate	83.1		mg/L	2022-05-05	
Calculated Parameters					
Hardness, Total (as CaCO3)	921	0.500	mg/L	N/A	
Dissolved Metals					
Aluminum, dissolved	< 0.0050	0.0050	ma/L	2022-05-04	
Antimony, dissolved	< 0.00020	0.00020		2022-05-04	
Arsenic, dissolved	< 0.00050	0.00050		2022-05-04	
Barium, dissolved	0.0404	0.0050		2022-05-04	
Beryllium, dissolved	< 0.00010	0.00010		2022-05-04	
Bismuth, dissolved	< 0.00010	0.00010		2022-05-04	
Boron, dissolved	0.486	0.0500		2022-05-04	
Cadmium, dissolved	0.000089	0.000010		2022-05-04	
Calcium, dissolved	172		mg/L	2022-05-04	
Chromium, dissolved	< 0.00050	0.00050		2022-05-04	
Cobalt, dissolved	0.00131	0.00010		2022-05-04	
Copper, dissolved	0.00156	0.00040		2022-05-04	
Iron, dissolved	< 0.010	0.010		2022-05-04	
Lead, dissolved	< 0.00020	0.00020		2022-05-04	
Lithium, dissolved	0.0346	0.00010		2022-05-04	
Magnesium, dissolved	119	0.010		2022-05-04	
Manganese, dissolved	0.365	0.00020		2022-05-04	
Mercury, dissolved	< 0.000010	0.00020		2022-05-07	
Molybdenum, dissolved	0.00529	0.00010		2022-05-04	
Nickel, dissolved	0.0163	0.00040		2022-05-04	
Phosphorus, dissolved	< 0.050	0.050		2022-05-04	
Potassium, dissolved	5.39		mg/L	2022-05-04	
Selenium, dissolved	< 0.00050	0.00050		2022-05-04	
Silicon, dissolved	11.9		mg/L	2022-05-04	
·	< 0.000050	0.000050		2022-05-04	
Silver, dissolved Sodium, dissolved	99.0			2022-05-04	
Strontium, dissolved	2.13	0.0010	mg/L	2022-05-04	
Sulfur, dissolved	31.9		mg/L	2022-05-04	
Tellurium, dissolved Thallium, dissolved	< 0.00050	0.00050		2022-05-04	
<u> </u>	0.000020	0.000020		2022-05-04	
Thorium, dissolved	< 0.00010	0.00010		2022-05-04	
Tin, dissolved	< 0.00020	0.00020		2022-05-04	
Titanium, dissolved	< 0.0050	0.0050		2022-05-04	
Tungsten, dissolved	< 0.0010	0.0010		2022-05-04	
Uranium, dissolved	0.0265	0.000020		2022-05-04	
Vanadium, dissolved	0.0031	0.0050	rng/L	2022-05-04	Page 8 of 2

PROJECT Westside La	egional District of Central Okanagan estside Landfill		WORK ORDER REPORTED	22E0223 2022-05-10 13:24	
Analyte	Result	RL	Units	Analyzed	Qualifier
BH4 (22E0223-05) Matrix: Wa	ater Sampled: 2022-05-03 08:43,	Continued			
Dissolved Metals, Continued					
Zinc, dissolved	< 0.0040	0.0040	mg/L	2022-05-04	
Zirconium, dissolved	0.00052	0.00010	mg/L	2022-05-04	
General Parameters					
Alkalinity, Total (as CaCO3)	668	1.0	mg/L	2022-05-05	
Alkalinity, Phenolphthalein (as Ca	aCO3) < 1.0		mg/L	2022-05-05	
Alkalinity, Bicarbonate (as CaCO	·		mg/L	2022-05-05	
Alkalinity, Carbonate (as CaCO3	· · · · · · · · · · · · · · · · · · ·		mg/L	2022-05-05	
Alkalinity, Hydroxide (as CaCO3)		1.0	mg/L	2022-05-05	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2022-05-06	
Chemical Oxygen Demand	30	20	mg/L	2022-05-04	
Conductivity (EC)	2050	2.0	μS/cm	2022-05-05	
pH	7.32	0.10	pH units	2022-05-05	HT2
Solids, Total Dissolved	1190	15	mg/L	2022-05-09	
Total Metals					
				0000 05 04	
Calcium. total	177	0.20	ma/L	2022-05-04	
Calcium, total Magnesium, total BH5 (22E0223-06) Matrix: Wa	177 126 ater Sampled: 2022-05-03 09:02	0.20 0.010	mg/L mg/L	2022-05-04	
Magnesium, total	126				
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride	126 ater Sampled: 2022-05-03 09:02	0.010	mg/L	2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N)	126 ater Sampled: 2022-05-03 09:02	0.010 0.10 0.010	mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride	126 ater Sampled: 2022-05-03 09:02	0.010 0.10 0.010	mg/L	2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N)	126 ater Sampled: 2022-05-03 09:02 128 7.62	0.010 0.10 0.010	mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate	126 ater Sampled: 2022-05-03 09:02 128 7.62	0.010 0.10 0.010	mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0	0.010 0.10 0.010 1.0	mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-05	
Magnesium, total BH5 (22E0223-06) Matrix: Wather	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0	0.010 0.10 0.010 1.0	mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-05	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0	0.10 0.010 0.010 1.0	mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-05 N/A	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050	0.010 0.10 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050 < 0.00020	0.010 0.10 0.010 1.0 0.500 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050 < 0.00020 0.00136	0.010 0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050 < 0.00020 0.00136 0.0132	0.010 0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050 < 0.00020 0.00136 0.0132 < 0.00010	0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.0050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050 < 0.00020 0.00136 0.0132 < 0.00010 < 0.00010	0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.00050 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050 < 0.00020 0.00136 0.0132 < 0.00010 < 0.00010 < 0.0500	0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.00050 0.00010 0.00010 0.0500 0.000010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050 < 0.00020 0.00136 0.0132 < 0.00010 < 0.00010 < 0.0500 0.00500	0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.00050 0.00010 0.00010 0.0500 0.000010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050 < 0.00020 0.00136 0.0132 < 0.00010 < 0.00010 < 0.00010 90.5	0.010 0.010 0.010 1.0 0.500 0.0050 0.00050 0.00050 0.00010 0.00010 0.0500 0.000010 0.000010 0.000010 0.000010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Calcium, dissolved Chromium, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050 < 0.00020 0.00136 0.0132 < 0.00010 < 0.00010 < 0.0500 0.000010 < 0.0500 0.000010 90.5 < 0.00050	0.10 0.010 1.0 0.500 0.0050 0.00050 0.00050 0.00010 0.00010 0.00010 0.000010 0.00010 0.00050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total BH5 (22E0223-06) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Beryllium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Chromium, dissolved Chromium, dissolved Cobalt, dissolved	126 ater Sampled: 2022-05-03 09:02 128 7.62 46.0 343 < 0.0050 < 0.00020 0.00136 0.0132 < 0.00010 < 0.00010 < 0.0500 0.00010 < 0.0500 0.000010 90.5 < 0.00050 < 0.00050 < 0.00010	0.010 0.010 0.010 1.0 0.500 0.0050 0.00050 0.00050 0.00010 0.00010 0.0500 0.000010 0.00050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	

REPORTED TORegional District of Central OkanaganWORK ORDER22E0223PROJECTWestside LandfillREPORTED2022-05-10 13:24

Analyte	Result	RL	Units	Analyzed	Qualifi
BH5 (22E0223-06) Matrix: Water Samp	eled: 2022-05-03 09:02, Coi	ntinued			
Dissolved Metals, Continued					
Lithium, dissolved	0.0210	0.00010	mg/L	2022-05-04	
Magnesium, dissolved	28.4	0.010	mg/L	2022-05-04	
Manganese, dissolved	0.00041	0.00020	mg/L	2022-05-04	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2022-05-07	
Molybdenum, dissolved	0.00925	0.00010	mg/L	2022-05-04	
Nickel, dissolved	0.00042	0.00040	mg/L	2022-05-04	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2022-05-04	
Potassium, dissolved	3.05	0.10	mg/L	2022-05-04	
Selenium, dissolved	0.00058	0.00050	mg/L	2022-05-04	
Silicon, dissolved	8.2	1.0	mg/L	2022-05-04	
Silver, dissolved	< 0.000050	0.000050		2022-05-04	
Sodium, dissolved	62.8	0.10	mg/L	2022-05-04	
Strontium, dissolved	0.478	0.0010		2022-05-04	
Sulfur, dissolved	15.9	3.0		2022-05-04	
Tellurium, dissolved	< 0.00050	0.00050		2022-05-04	
Thallium, dissolved	< 0.000020	0.000020		2022-05-04	
Thorium, dissolved	< 0.00010	0.00010		2022-05-04	
Tin, dissolved	< 0.00020	0.00020		2022-05-04	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2022-05-04	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2022-05-04	
Uranium, dissolved	0.00594	0.000020		2022-05-04	
Vanadium, dissolved	0.0052	0.0050		2022-05-04	
Zinc, dissolved	< 0.0040	0.0040		2022-05-04	
Zirconium, dissolved	< 0.00010	0.00010		2022-05-04	
General Parameters					
Alkalinity, Total (as CaCO3)	260	1.0	mg/L	2022-05-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2022-05-05	
Alkalinity, Bicarbonate (as CaCO3)	260		mg/L	2022-05-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2022-05-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2022-05-05	
Ammonia, Total (as N)	< 0.050	0.050		2022-05-06	
Chemical Oxygen Demand	< 20		mg/L	2022-05-04	
Conductivity (EC)	957		μS/cm	2022-05-05	
pH	7.45		pH units	2022-05-05	HT2
Solids, Total Dissolved	531		mg/L	2022-05-09	
Total Metals	-				
Calcium, total	96.7	0.20	mg/L	2022-05-04	
Magnesium, total	30.8	0.010		2022-05-04	

BH7 (22E0223-07) | Matrix: Water | Sampled: 2022-05-03 10:04

REPORTED TO	Regional District of Central Okanagan	WORK ORDER	22E0223
PROJECT	Westside Landfill	REPORTED	2022-05-10 13:24

Analyte	Result	RL	Units	Analyzed	Qualifier
BH7 (22E0223-07) Matrix: Water \$		ntinued			
Anions					
Chloride	63.7	0.10	mg/L	2022-05-05	
Nitrate (as N)	3.88	0.010	mg/L	2022-05-05	
Sulfate	40.1		mg/L	2022-05-05	
Calculated Parameters					
Hardness, Total (as CaCO3)	481	0.500	mg/L	N/A	
Dissolved Metals					
Aluminum, dissolved	< 0.0050	0.0050	ma/L	2022-05-04	
Antimony, dissolved	< 0.00020	0.00020		2022-05-04	
Arsenic, dissolved	0.00217	0.00050		2022-05-04	
Barium, dissolved	0.0218	0.0050		2022-05-04	
Beryllium, dissolved	< 0.00010	0.00010		2022-05-04	
Bismuth, dissolved	< 0.00010	0.00010		2022-05-04	
Boron, dissolved	0.0614	0.0500		2022-05-04	
Cadmium, dissolved	0.000062	0.000010		2022-05-04	
Calcium, dissolved	117		mg/L	2022-05-04	
Chromium, dissolved	< 0.00050	0.00050		2022-05-04	
Cobalt, dissolved	0.00056	0.00010		2022-05-04	
Copper, dissolved	0.00167	0.00040		2022-05-04	
Iron, dissolved	< 0.010	0.010		2022-05-04	
Lead, dissolved	< 0.00020	0.00020		2022-05-04	
Lithium, dissolved	0.0192	0.00010		2022-05-04	
Magnesium, dissolved	45.6	0.010		2022-05-04	
Manganese, dissolved	0.0795	0.00020		2022-05-04	
Mercury, dissolved	< 0.000010	0.000010		2022-05-07	
Molybdenum, dissolved	0.00216	0.00010		2022-05-04	
Nickel, dissolved	0.00314	0.00040		2022-05-04	
Phosphorus, dissolved	0.087	0.050		2022-05-04	
Potassium, dissolved	2.68		mg/L	2022-05-04	
Selenium, dissolved	0.00100	0.00050		2022-05-04	
Silicon, dissolved	14.4		mg/L	2022-05-04	
Silver, dissolved	< 0.00050	0.000050		2022-05-04	
Sodium, dissolved	63.9		mg/L	2022-05-04	
Strontium, dissolved	0.842	0.0010		2022-05-04	
Sulfur, dissolved	14.1		mg/L	2022-05-04	
Tellurium, dissolved	< 0.00050	0.00050		2022-05-04	
Thallium, dissolved	< 0.000020	0.000020		2022-05-04	
Thorium, dissolved	< 0.00010	0.00010		2022-05-04	
Tin, dissolved	< 0.00020	0.00020		2022-05-04	
Titanium, dissolved	< 0.0050	0.0050		2022-05-04	
Tungsten, dissolved	< 0.0010	0.0010		2022-05-04	
Uranium, dissolved	0.0113	0.000020		2022-05-04	
Vanadium, dissolved	0.0117	0.0050		2022-05- <u>04</u>	
, .=		ulta Obvievaly			age 11 of

REPORTED TO Regional Distric PROJECT Westside Landfi	t of Central Okanagan ill		WORK ORDER REPORTED	22E0223 2022-05-1	0 13:24
Analyte	Result	RL	Units	Analyzed	Qualifier
BH7 (22E0223-07) Matrix: Water	Sampled: 2022-05-03 10:04, Cont	inued			
Dissolved Metals, Continued					
Zinc, dissolved	0.0160	0.0040	mg/L	2022-05-04	
Zirconium, dissolved	0.00021	0.00010	mg/L	2022-05-04	
General Parameters					
Alkalinity, Total (as CaCO3)	482	1.0	mg/L	2022-05-05	
Alkalinity, Phenolphthalein (as CaCO3	3) < 1.0		mg/L	2022-05-05	
Alkalinity, Bicarbonate (as CaCO3)	482		mg/L	2022-05-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2022-05-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2022-05-05	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2022-05-06	
Chemical Oxygen Demand	< 20	20	mg/L	2022-05-04	
Conductivity (EC)	1120	2.0	μS/cm	2022-05-05	
рН	7.30	0.10	pH units	2022-05-05	HT2
Solids, Total Dissolved	657	15	mg/L	2022-05-09	
Total Metals					
Calcium, total	119	0.20	ma/L	2022-05-04	
Calcium, total Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa	119 46.7 ater Sampled: 2022-05-03 09:40	0.20 0.010	mg/L	2022-05-04	
Magnesium, total	46.7				
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride	46.7	0.010	mg/L	2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N)	46.7 ater Sampled: 2022-05-03 09:40	0.010 0.10 0.010	mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride	46.7 ater Sampled: 2022-05-03 09:40	0.010 0.10 0.010	mg/L	2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N)	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458	0.010 0.10 0.010	mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458	0.010 0.10 0.010	mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wather Matrix: Wa	46.7 eater Sampled: 2022-05-03 09:40 73.1 0.458 16.3	0.010 0.10 0.010 1.0	mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-05	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	46.7 eater Sampled: 2022-05-03 09:40 73.1 0.458 16.3	0.010 0.10 0.010 1.0	mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-05	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Water Mat	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3	0.010 0.10 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-05	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wath Mat	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050	0.010 0.10 0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-05 N/A	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050 < 0.00020	0.010 0.10 0.010 1.0 0.500 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050 < 0.00020 < 0.00050	0.010 0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Waterian	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050 < 0.00020 < 0.00050 0.0115	0.010 0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050 < 0.00020 < 0.00050 0.0115 < 0.00010	0.010 0.010 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.00050 0.00010 0.00010 0.00500	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050 < 0.00020 < 0.00050 0.0115 < 0.00010 < 0.00010	0.010 0.010 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.00050 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050 < 0.00020 < 0.00050 0.0115 < 0.00010 < 0.00010 < 0.0500	0.10 0.010 1.0 0.500 0.0050 0.00050 0.0050 0.00010 0.00010 0.0500 0.000010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 N/A 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050 < 0.00020 < 0.00050 0.0115 < 0.00010 < 0.00010 < 0.00500 < 0.00500 < 0.00010	0.10 0.010 1.0 0.500 0.0050 0.00050 0.0050 0.00010 0.00010 0.0500 0.000010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050 < 0.00020 < 0.00050 0.0115 < 0.00010 < 0.00010 < 0.0500 < 0.00010 123	0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.00050 0.00010 0.00010 0.0500 0.000010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Chromium, dissolved	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050 < 0.00020 < 0.00050 0.0115 < 0.00010 < 0.0500 < 0.0500 < 0.00010 123 < 0.00050 < 0.00050 < 0.00050 0.00050 0.00050 < 0.00071	0.10 0.010 1.0 0.500 0.0050 0.00050 0.00050 0.00010 0.00010 0.00010 0.00010 0.20 0.00050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	
Magnesium, total MW 99-2 (22E0223-08) Matrix: Wa Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Chromium, dissolved Chromium, dissolved Cobalt, dissolved	46.7 ater Sampled: 2022-05-03 09:40 73.1 0.458 16.3 657 < 0.0050 < 0.00020 < 0.00050 0.0115 < 0.00010 < 0.0500 < 0.0500 < 0.00010 < 0.0500 < 0.00010 123 < 0.00050 < 0.00050 < 0.00050	0.010 0.010 0.010 0.010 1.0 0.500 0.0050 0.00050 0.0050 0.00010 0.0500 0.000010 0.00050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-05-04 2022-05-05 2022-05-05 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04 2022-05-04	

REPORTED TO Regional District of Central Okanagan

Westside Landfill **PROJECT**

WORK ORDER REPORTED

22E0223 2022-05-10 13:24

Analyte Result **RL** Units Analyzed Qualifier

Dissolved Metals, Continued					
Lithium, dissolved	0.0403	0.00010	mg/L	2022-05-04	
Magnesium, dissolved	84.9	0.010	mg/L	2022-05-04	
Manganese, dissolved	0.00450	0.00020	mg/L	2022-05-04	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2022-05-07	
Molybdenum, dissolved	0.00064	0.00010	mg/L	2022-05-04	
Nickel, dissolved	< 0.00040	0.00040	mg/L	2022-05-04	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2022-05-04	
Potassium, dissolved	0.81	0.10	mg/L	2022-05-04	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2022-05-04	
Silicon, dissolved	8.2	1.0	mg/L	2022-05-04	
Silver, dissolved	< 0.000050	0.000050		2022-05-04	
Sodium, dissolved	43.4	0.10	mg/L	2022-05-04	
Strontium, dissolved	1.82	0.0010	mg/L	2022-05-04	
Sulfur, dissolved	6.4	3.0	mg/L	2022-05-04	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2022-05-04	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2022-05-04	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2022-05-04	
Tin, dissolved	< 0.00020	0.00020	mg/L	2022-05-04	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2022-05-04	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2022-05-04	
Uranium, dissolved	0.00753	0.000020	mg/L	2022-05-04	
Vanadium, dissolved	< 0.0010	0.0050	mg/L	2022-05-04	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2022-05-04	
Zirconium, dissolved	0.00025	0.00010	mg/L	2022-05-04	
General Parameters					
Alkalinity, Total (as CaCO3)	576	1.0	mg/L	2022-05-05	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2022-05-05	
Alkalinity, Bicarbonate (as CaCO3)	576	1.0	mg/L	2022-05-05	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2022-05-05	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2022-05-05	
Ammonia, Total (as N)	< 0.050	0.050	mg/L	2022-05-06	
Chemical Oxygen Demand	24	20	mg/L	2022-05-04	
Conductivity (EC)	1220	2.0	μS/cm	2022-05-05	
pH	7.60	0.10	pH units	2022-05-05	HT:
Solids, Total Dissolved	697	15	mg/L	2022-05-09	
otal Metals					
Calcium, total	119	0.20	mg/L	2022-05-04	
Magnesium, total	79.6	0.010	ma/L	2022-05-04	

Sample Qualifiers:

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded field analysis is recommended.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Regional District of Central Okanagan

PROJECT Westside Landfill

WORK ORDER REPORTED 22E0223

TED 2022-05-10 13:24

Analysis Description	Method Ref.	Technique	Accredited	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	✓	Kelowna
Ammonia, Total in Water	SM 4500-NH3 G* (2017)	Automated Colorimetry (Phenate)	✓	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	✓	Kelowna
Chemical Oxygen Demand in Water	SM 5220 D* (2017)	Closed Reflux, Colorimetry	✓	Kelowna
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	✓	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond
Hardness in Water	SM 2340 B* (2017)	Calculation: 2.497 [total Ca] + 4.118 [total Mg] (Est)	✓	N/A
Mercury, dissolved in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
pH in Water	SM 4500-H+ B (2017)	Electrometry	✓	Kelowna
Solids, Total Dissolved in Water	Solids in Water, Filtered / SM 2540 C* (2017)	Solids in Water, Filtered / Gravimetry (Dried at 103-105C)	✓	Kelowna
Total Metals in Water	EPA 200.2 / EPA 6020B	HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

< Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

mg/L Milligrams per litre

pH units pH < 7 = acidic, ph > 7 = basic μ S/cm Microsiemens per centimetre

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Regional District of Central Okanagan

PROJECT Westside Landfill

WORK ORDER REPORTED

22E0223

2022-05-10 13:24

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline (s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

REPORTED TO Regional District of Central Okanagan

PROJECT Westside Landfill

WORK ORDER REPORTED

22E0223 2022-05-10 13:24

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- **Method Blank (Blk)**: A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Anions, Batch B2E0259									
Blank (B2E0259-BLK1)			Prepared	I: 2022-05-0	4, Analyze	d: 2022-0)5-04		
Chloride	< 0.10	0.10 mg/L							
Nitrate (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
Blank (B2E0259-BLK2)			Prepared	I: 2022-05-0	5, Analyze	d: 2022-0)5-05		
Chloride	< 0.10	0.10 mg/L							_
Nitrate (as N)	< 0.010	0.010 mg/L							
Sulfate	< 1.0	1.0 mg/L							
LCS (B2E0259-BS1)			Prepared	I: 2022-05-0	4, Analyze	d: 2022-0)5-04		
Chloride	15.8	0.10 mg/L	16.0		99	90-110			
Nitrate (as N)	3.91	0.010 mg/L	4.00		98	90-110			
Sulfate	16.2	1.0 mg/L	16.0		101	90-110			
LCS (B2E0259-BS2)			Prepared	I: 2022-05-0	5, Analyze	d: 2022-0	05-05		
Chloride	15.6	0.10 mg/L	16.0		97	90-110			
Nitrate (as N)	3.92	0.010 mg/L	4.00		98	90-110			
Sulfate	16.1	1.0 mg/L	16.0		101	90-110			

Dissolved Metals, Batch B2E0491

		Prepared: 2022-05-04, Analyzed: 2022-05-04
< 0.0050	0.0050 mg/L	
< 0.00020	0.00020 mg/L	
< 0.00050	0.00050 mg/L	
< 0.0050	0.0050 mg/L	
< 0.00010	0.00010 mg/L	
< 0.00010	0.00010 mg/L	
< 0.0500	0.0500 mg/L	
< 0.000010	0.000010 mg/L	
< 0.20	0.20 mg/L	
< 0.00050	0.00050 mg/L	
< 0.00010	0.00010 mg/L	
< 0.00040	0.00040 mg/L	
< 0.010	0.010 mg/L	
< 0.00020	0.00020 mg/L	
	< 0.00020 < 0.00050 < 0.0050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.000010 < 0.000010 < 0.00050 < 0.00050 < 0.00010 < 0.00040 < 0.010	< 0.00020

REPORTED TO Regional District Westside Landfill		nagan				WORK REPOR)223 !-05-10	13:24
Analyte	Result	RL U	Jnits	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifie
Dissolved Metals, Batch B2E0491, Cor	ntinued									
Blank (B2E0491-BLK1), Continued				Prepared	: 2022-05-0	4, Analyze	d: 2022-0	05-04		
Lithium, dissolved	< 0.00010	0.00010 m	ng/L							
Magnesium, dissolved	< 0.010	0.010 m	ng/L							
Manganese, dissolved	< 0.00020	0.00020 m	ng/L							
Molybdenum, dissolved	< 0.00010	0.00010 m	ng/L							
Nickel, dissolved	< 0.00040	0.00040 m	ng/L							
Phosphorus, dissolved	< 0.050	0.050 m	ng/L							
Potassium, dissolved	< 0.10	0.10 m								
Selenium, dissolved	< 0.00050	0.00050 m	ng/L							
Silicon, dissolved	< 1.0	1.0 m								
Silver, dissolved	< 0.000050	0.000050 m								
Sodium, dissolved	< 0.10	0.10 m								
Strontium, dissolved	< 0.0010	0.0010 m								
Sulfur, dissolved	< 3.0	3.0 m								
Tellurium, dissolved	< 0.00050	0.00050 m								
Thallium, dissolved	< 0.000020	0.000020 m								
Thorium, dissolved	< 0.00010	0.00010 m 0.00020 m								
Tin, dissolved Titanium, dissolved	< 0.00020									
Tungsten, dissolved	< 0.0050 < 0.0010	0.0050 m 0.0010 m								
Uranium, dissolved	< 0.000020	0.00000 m								
Vanadium, dissolved	< 0.0010	0.000020 m								
Zinc, dissolved	< 0.0040	0.0040 m								
Zirconium, dissolved	< 0.00010	0.00010 m								
LCS (B2E0491-BS1)				Prepared	: 2022-05-0	4, Analyze	d: 2022-0	05-04		
Aluminum, dissolved	0.0215	0.0050 m	ng/L	0.0200		108	80-120			
Antimony, dissolved	0.0187	0.00020 m	ng/L	0.0200		94	80-120			
Arsenic, dissolved	0.0199	0.00050 m	ng/L	0.0200		100	80-120			
Barium, dissolved	0.0196	0.0050 m	ng/L	0.0200		98	80-120			
Beryllium, dissolved	0.0194	0.00010 m		0.0200		97	80-120			
Bismuth, dissolved	0.0199	0.00010 m		0.0200		99	80-120			
Boron, dissolved	< 0.0500	0.0500 m		0.0200		114	80-120			
Cadmium, dissolved	0.0197	0.000010 m		0.0200		98	80-120			
Calcium, dissolved	1.79	0.20 m		2.00		89	80-120			
Chromium, dissolved	0.0196	0.00050 m		0.0200		98	80-120			
Cobalt, dissolved	0.0198	0.00010 m		0.0200		99	80-120			
Copper, dissolved	0.0197	0.00040 m		0.0200		98	80-120			
Iron, dissolved Lead, dissolved	1.98 0.0197	0.010 m 0.00020 m		2.00 0.0200		99 99	80-120 80-120			
Lithium, dissolved	0.0197	0.00020 fr		0.0200		98	80-120			
Magnesium, dissolved	1.91	0.00010 m		2.00		96 96	80-120			
Manganese, dissolved	0.0196	0.00020 m		0.0200		98	80-120			
Molybdenum, dissolved	0.0195	0.00020 m		0.0200		97	80-120			
Nickel, dissolved	0.0200	0.00040 m	_	0.0200		100	80-120			
Phosphorus, dissolved	1.99	0.050 m		2.00		99	80-120			
Potassium, dissolved	1.95	0.10 m		2.00		97	80-120			
Selenium, dissolved	0.0194	0.00050 m		0.0200		97	80-120			
Silicon, dissolved	2.0	1.0 m		2.00		99	80-120			
Silver, dissolved	0.0199	0.000050 m		0.0200		99	80-120			
Sodium, dissolved	2.08	0.10 m		2.00		104	80-120			
Strontium, dissolved	0.0197	0.0010 m		0.0200		99	80-120			
Sulfur, dissolved	5.0	3.0 m	_	5.00		100	80-120			
Tellurium, dissolved	0.0200	0.00050 m		0.0200		100	80-120			
Tonariam, alocolivou	0.0200									
Thallium, dissolved	0.0197	0.000020 m		0.0200		99	80-120			
<u>`</u>			ng/L			99 97 99	80-120 80-120 80-120			

	Regional District of Central Oka Westside Landfill	nagan			WORK REPOR	ORDER RTED	22E0 2022)223 -05-10	13:24
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Ba	tch B2E0491, Continued								
LCS (B2E0491-BS1),	Continued		Prepared	: 2022-05-04	4, Analyze	ed: 2022-0	5-04		
Titanium, dissolved	0.0194	0.0050 mg/L	0.0200		97	80-120			
Tungsten, dissolved	0.0198	0.0010 mg/L	0.0200		99	80-120			
Uranium, dissolved	0.0194	0.000020 mg/L	0.0200		97	80-120			
Vanadium, dissolved	0.0198	0.0010 mg/L	0.0200		99	80-120			
Zinc, dissolved	0.0192	0.0040 mg/L	0.0200		96	80-120			
Zirconium, dissolved	0.0200	0.00010 mg/L	0.0200		100	80-120			
Duplicate (B2E0491-D	OUP1) S	ource: 22E0223-01	Prepared	: 2022-05-04	4, Analyze	ed: 2022-0	5-04		
Aluminum, dissolved	< 0.0050	0.0050 mg/L		< 0.0050				20	
Antimony, dissolved	< 0.00020	0.00020 mg/L		< 0.00020				20	
Arsenic, dissolved	< 0.00050	0.00050 mg/L		< 0.00050				20	
Barium, dissolved	0.0393	0.0050 mg/L		0.0394			< 1	20	
Beryllium, dissolved	< 0.00010	0.00010 mg/L		< 0.00010				20	
Bismuth, dissolved	< 0.00010	0.00010 mg/L		< 0.00010				20	
Boron, dissolved Cadmium, dissolved	0.460	0.0500 mg/L		0.487			6 12	20	
Calcium, dissolved	0.000097	0.000010 mg/L		0.000086 178			5	20	
Chromium, dissolved	< 0.00050	0.20 mg/L 0.00050 mg/L		< 0.00050			<u> </u>	20	
Cobalt, dissolved	0.00131	0.00030 mg/L		0.00131			< 1	20	
Copper, dissolved	0.00159	0.00040 mg/L		0.00162				20	
Iron, dissolved	< 0.010	0.010 mg/L		< 0.010				20	
Lead, dissolved	< 0.00020	0.00020 mg/L		< 0.00020				20	
Lithium, dissolved	0.0318	0.00010 mg/L		0.0344			8	20	
Magnesium, dissolved	120	0.010 mg/L		122			2	20	
Manganese, dissolved	0.364	0.00020 mg/L		0.370			1	20	
Molybdenum, dissolved		0.00010 mg/L		0.00522			< 1	20	
Nickel, dissolved	0.0163	0.00040 mg/L		0.0163			< 1	20	
Phosphorus, dissolved	< 0.050	0.050 mg/L		< 0.050				20	
Potassium, dissolved	5.27	0.10 mg/L		5.40			2	20	
Selenium, dissolved Silicon, dissolved	< 0.00050 11.3	0.00050 mg/L 1.0 mg/L		< 0.00050 11.7			3	20	
Silver, dissolved	< 0.000050	0.000050 mg/L		< 0.000050				20	
Sodium, dissolved	98.4	0.10 mg/L		99.8			1	20	
Strontium, dissolved	2.07	0.0010 mg/L		2.12			3	20	
Sulfur, dissolved	31.8	3.0 mg/L		32.1			< 1	20	
Tellurium, dissolved	< 0.00050	0.00050 mg/L		< 0.00050				20	
Thallium, dissolved	0.000022	0.000020 mg/L		0.000021				20	
Thorium, dissolved	< 0.00010	0.00010 mg/L		< 0.00010				20	
Tin, dissolved	< 0.00020	0.00020 mg/L		< 0.00020				20	
Titanium, dissolved	< 0.0050	0.0050 mg/L		< 0.0050				20	
Tungsten, dissolved	< 0.0010	0.0010 mg/L		< 0.0010				20	
Uranium, dissolved Vanadium, dissolved	0.0264 0.0032	0.000020 mg/L 0.0050 mg/L		0.0280			6	20	
Zinc, dissolved	< 0.0032	0.0030 Hg/L 0.0040 mg/L		< 0.0031				20	
Zirconium, dissolved	0.00049	0.00010 mg/L		0.00051			3	20	
Reference (B2E0491-		0.000.10g, 2	Prepared	: 2022-05-04	4 Analyze	ed: 2022-0			
Aluminum, dissolved	0.238	0.0050 mg/L	0.235	00 0	101	70-130			
Antimony, dissolved	0.0433	0.00020 mg/L	0.0431		100	70-130			
Arsenic, dissolved	0.446	0.00050 mg/L	0.423		105	70-130			
Barium, dissolved	3.08	0.0050 mg/L	3.30		93	70-130			
Beryllium, dissolved	0.211	0.00010 mg/L	0.209		101	70-130			
Boron, dissolved	1.69	0.0500 mg/L	1.65		103	70-130			
Cadmium, dissolved	0.215	0.000010 mg/L	0.221		97	70-130			
Calcium, dissolved	7.25	0.20 mg/L	7.72		94	70-130			
Chromium, dissolved	0.428	0.00050 mg/L	0.434		99	70-130			
Cobalt, dissolved	0.126	0.00010 mg/L	0.124		102	70-130		Do	ge 18 of

REPORTED TO Regional District of Westside Landfill	of Central Okar	nagan			WORK REPOR	ORDER TED	22E0 2022	0223 2-05-10	13:24
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B2E0491, Con	tinued								
Reference (B2E0491-SRM1), Continued			Prepared	: 2022-05-04	I, Analyze	ed: 2022-0	5-04		
Copper, dissolved	0.823	0.00040 mg/L	0.815		101	70-130			
Iron, dissolved	1.26	0.010 mg/L	1.27		99	70-130			
Lead, dissolved	0.109	0.00020 mg/L	0.110		99	70-130			
Lithium, dissolved	0.101	0.00010 mg/L	0.100		101	70-130			
Magnesium, dissolved	6.53	0.010 mg/L	6.59		99	70-130			
Manganese, dissolved	0.336	0.00020 mg/L	0.342		98	70-130			
Molybdenum, dissolved	0.394	0.00010 mg/L	0.404		97	70-130			
Nickel, dissolved	0.853	0.00040 mg/L	0.835		102	70-130			
Phosphorus, dissolved Potassium, dissolved	0.515 2.98	0.050 mg/L 0.10 mg/L	0.499 2.88		103 104	70-130 70-130			
Selenium, dissolved	0.0334	0.00050 mg/L	0.0324		103	70-130			
Sodium, dissolved	19.3	0.10 mg/L	18.0		107	70-130			
Strontium, dissolved	0.901	0.0010 mg/L	0.935		96	70-130			
Thallium, dissolved	0.0379	0.000020 mg/L	0.0385		99	70-130			
Uranium, dissolved	0.241	0.000020 mg/L	0.258		93	70-130			
Vanadium, dissolved	0.844	0.0050 mg/L	0.873		97	70-130			
Zinc, dissolved	0.851	0.0040 mg/L	0.848		100	70-130			
Mercury, dissolved	< 0.000010	0.000010 mg/L	Dranarad	. 2022 OF 06	C Analyza	.d. 2022 0	F 07		
Mercury, dissolved	< 0.000010	0.000010 mg/L	Prepared	: 2022-05-06	3, Analyze	ed: 2022-0	5-07		
Blank (B2E0720-BLK3)	10.000010	0.000010 Hig/E	Prenared	: 2022-05-06	S Analyze	.d. 2022 - 0	5-07		
Mercury, dissolved	< 0.000010	0.000010 mg/L	Troparou	. 2022 00 00	,, , iliaiy 20		0 01		
Blank (B2E0720-BLK4)			Prepared	: 2022-05-06	6, Analyze	ed: 2022-0	5-07		
Mercury, dissolved	< 0.000010	0.000010 mg/L			· •				
Blank (B2E0720-BLK5)			Prepared	: 2022-05-06	6, Analyze	ed: 2022-0	5-07		
Mercury, dissolved	< 0.000010	0.000010 mg/L							
Duplicate (B2E0720-DUP3)	Sc	ource: 22E0223-01	Prepared	: 2022-05-06	6, Analyze	d: 2022-0	5-07		
Mercury, dissolved	< 0.000010	0.000010 mg/L		< 0.000010				20	
Matrix Spike (B2E0720-MS3)		ource: 22E0223-02		: 2022-05-06			5-07		
Mercury, dissolved	0.000424	0.000020 mg/L		< 0.000010	85	70-130	5.07		
Reference (B2E0720-SRM1) Mercury, dissolved	0.000253	0.000010 mg/L	0.000250	: 2022-05-06	5, Analyze	70-130	5-07		
Reference (B2E0720-SRM2)	0.000233	0.000010 Hig/L		: 2022-05-06			5.07		
Mercury, dissolved	0.000253	0.000010 mg/L	0.000250	. 2022-05-00	101	70-130	3- 07		
Reference (B2E0720-SRM3)				: 2022-05-06			5-07		
Mercury, dissolved	0.000257	0.000010 mg/L	0.000250		103	70-130	- • •		
Reference (B2E0720-SRM4)			Prepared	: 2022-05-06	6, Analyze	d: 2022-0	5-07		
Mercury, dissolved	0.000255	0.000010 mg/L	0.000250		102	70-130			
Reference (B2E0720-SRM5)			Prepared	: 2022-05-06	6, Analyze	d: 2022-0	5-07		
Mercury, dissolved	0.000252	0.000010 mg/L	0.000250		101	70-130			

Lave	Content Con	REPORTED TO PROJECT	Regional District of Westside Landfill	Central Okana	igan			WORK REPOR	ORDER RTED		0223 2-05-10	13:24
Prepared: 2022-05-04, Analyzed: 2022-05-04 Chemical Caygen Demand 497 20 mg/L 500 98 mg-115	Prepared: 2022-05-04, Analyzed: 2022-05-04 Chemical Crygen Demand 4-20 20 mg/L 500 91 89-115	Analyte		Result	RL Units	•		% REC		% RPD		Qualifie
Chemical Oxygen Demand 420	Chemical Chygen Demand	General Parameter	s, Batch B2E0410									
Prepared: 2022-05-04, Analyzed: 2022-05-04 Prepared: 2022-05-04 Prepared: 2022-05-05 Prepared: 2022-05-06 Prepared: 2022-05-05	Prepared: 2022-05-04, Analyzed: 2022-05-04 Chemical Oxygen Demand 497 20 mg/L 500 98 89-115	Blank (B2E0410-B	LK1)			Prepared	: 2022-05-04	I, Analyze	ed: 2022-	05-04		
Chemical Oxygen Demand 497 20 mg/L 500 98 89-115	Chemical Oxygen Demand 497 20 mg/L 500 99 89-115	Chemical Oxygen De	emand	< 20	20 mg/L							
Chemical Oxygen Demand 497 20 mg/L 500 98 89-115	Chemical Oxygen Demand 497 20 mg/L 500 99 89-115	LCS (B2E0410-BS	1)			Prepared	: 2022-05-04	1. Analyze	ed: 2022-	05-04		
Propared: 2022-05-06, Analyzed: 2022-05-06 Anmonia, Total (as N)	Blank (BZE0569-BLK1)	•	•	497	20 mg/L							
Ammonia, Total (as N)	Ammonia, Total (as N)	General Parameter	s, Batch B2E0569									
Blank (BZE0569-BLK2)	Prepared: 2022-05-06, Analyzed: 2022-05-06 Amonia, Total (as N)	Blank (B2E0569-B	LK1)			Prepared	: 2022-05-06	S, Analyze	ed: 2022-	05-06		
Mamonia, Total (as N)	Ammonia, Total (as N)	Ammonia, Total (as N	l)	< 0.050	0.050 mg/L							
Mamonia, Total (as N)	Ammonia, Total (as N)	Blank (B2E0569-B	LK2)			Prepared	: 2022-05-06	S, Analyze	ed: 2022-	05-06		
Prepared: 2022-05-06, Analyzed: 2022-05-06 Analyzed: 2022-05-05	Prepared: 2022-05-06, Analyzed: 2022-05-06	•	•	< 0.050	0.050 mg/L			,				
Ammonia, Total (as N)	Ammonia, Total (as N)	,				Prepared	: 2022-05-06	S. Analvze	ed: 2022-	05-06		
Prepared: 2022-05-06, Analyzed: 2022-05-06	Prepared: 2022-05-06, Analyzed: 2022-05-06	<u>`</u>	·	< 0.050	0.050 ma/L	Tropulou	. 2022 00 00	,,, indiy20	, LOLL	00 00		
Ammonia, Total (as N) 0.951 0.050 mg/L 1.00 95 90-115 LCS (B2E0569-BS2) Prepared: 2022-05-06, Analyzed: 2022-05-06 Ammonia, Total (as N) 0.960 0.050 mg/L 1.00 96 90-115 LCS (B2E0569-BS3) Prepared: 2022-05-06, Analyzed: 2022-05-06 Ammonia, Total (as N) 0.958 0.050 mg/L 1.00 96 90-115 Ammonia, Total (as N) 0.958 0.050 mg/L 1.00 96 90-115 General Parameters, Batch B2E0686 Blank (B2E0686-BLK1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bearbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Prepoliphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Brotanotate (as CaCO3)	Ammonia, Total (as N) 0.951 0.050 mg/L 1.00 95 90-115	· · · · · ·				Propared	. 2022 05 06	S Apolyzo	v4: 2022	05.06		
Prepared: 2022-05-06, Analyzed: 2022-05-06 Ammonia, Total (as N) 0.960 0.050 mg/L 1.00 96 90-115	Prepared: 2022-05-06, Analyzed: 2022-05-06	· · · · · · · · · · · · · · · · · · ·	•	0.951	0.050 mg/l	· · · · · ·	. 2022-05-00	•		05-00		
Ammonia, Total (as N) 0.960 0.050 mg/L 1.00 96 90-115 LCS (B2E0569-BS3) Prepared: 2022-05-06, Analyzed: 2022-05-06 Ammonia, Total (as N) 0.958 0.050 mg/L 1.00 96 90-115 General Parameters, Batch B2E0686 Blank (B2E0686-BLK1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Protal (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Protanolate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Protonolate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, P	Ammonia, Total (as N) 0.960 0.050 mg/L 1.00 96 90-115 LCS (B2E0569-BS3) Prepared: 2022-05-06, Analyzed: 2022-05-06 Armonia, Total (as N) 0.958 0.050 mg/L 1.00 96 90-115 General Parameters, Batch B2E0686 Blank (B2E0686-BLK1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L 1.0 mg/L Alkalinity, Provide (as CaCO3) < 1.0 1.0 mg/L 1.0 mg/L Conductivity (EC) < 2.0 2.0 μ/S/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Blank (B2E0686-BLK2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Blank (B2E0686-BLK2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Blank (Balinity, Britanity, B			0.931	0.030 Hig/L		2000 05 00			05.00		
Prepared: 2022-05-06, Analyzed: 2022-05-06 Ammonia, Total (as N) 0.958 0.050 mg/L 1.00 96 90-115 General Parameters, Batch B2E0686 Blank (B2E0686-BLK1)	Prepared: 2022-05-06, Analyzed: 2022-05-06	`	•	0.000	0.050		: 2022-05-06			05-06		
Ammonia, Total (as N) 0.958 0.050 mg/L 1.00 96 90-115	Armonia, Total (as N) 0.958 0.050 mg/L 1.00 96 90-115	Ammonia, Iotal (as N	1)	0.960	0.050 mg/L							
Blank (B2E0686-BLK1)	Blank (B2E0686-BLK1)	LCS (B2E0569-BS	3)			Prepared	: 2022-05-06	6, Analyze	ed: 2022-	05-06		
Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Floral (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Floral (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Floral (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Mydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 µS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	Alkalinity, Phenolphthalein (as CaCO3) < 1.0					Prepared	: 2022-05-05	ō, Analyze	ed: 2022-	05-05		
Alkalinity, Bicarbonate (as CaCO3)	Alkalinity, Bicarbonate (as CaCO3)	<u>, , , , , , , , , , , , , , , , , , , </u>										
Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Florance (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 µS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	Alkalinity, Carbonate (as CaCO3)		,									
Alkalinity, Hydroxide (as CaCO3)	Alkalinity, Hydroxide (as CaCO3)	•										
Prepared: 2022-05-05, Analyzed: 2022-05-05	Blank (B2E0686-BLK2)		· ,									
Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Blank (B2E0686-BLK3) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 µS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	Alkalinity, Total (as CaCO3) < 1.0	Conductivity (EC)		< 2.0	2.0 μS/cm							
Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 µS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 µS/cm LCS (B2E0686-BS1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 µS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 96 80-120	Blank (B2E0686-B	LK2)			Prepared	: 2022-05-05	, Analyze	ed: 2022-	05-05		
Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 μS/cm Blank (B2E0686-BLK3) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 μS/cm LCS (B2E0686-BS1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 μS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 μS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 102 80-120											
Alkalinity, Carbonate (as CaCO3) < 1.0	Alkalinity, Carbonate (as CaCO3) < 1.0											
Alkalinity, Hydroxide (as CaCO3) < 1.0	Alkalinity, Hydroxide (as CaCO3) < 1.0	·										
Conductivity (EC) < 2.0 2.0 μS/cm	Conductivity (EC) < 2.0 2.0 μS/cm											
Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 µS/cm CS (B2E0686-BS1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 CS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 μS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 102 80-120	Conductivity (EC)	,	< 2.0								
Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 µS/cm CS (B2E0686-BS1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 CS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	Alkalinity, Total (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Phenolphthalein (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 μS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 102 80-120	Blank (B2E0686-B	LK3)			Prepared	: 2022-05-05	5, Analyze	ed: 2022-	05-05		
Alkalinity, Bicarbonate (as CaCO3) < 1.0	Alkalinity, Bicarbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 μS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 102 80-120	Alkalinity, Total (as Ca	aCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 µS/cm LCS (B2E0686-BS1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	Alkalinity, Carbonate (as CaCO3) < 1.0 1.0 mg/L Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 μS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 102 80-120											
Alkalinity, Hydroxide (as CaCO3) < 1.0 1.0 mg/L Conductivity (EC) < 2.0 2.0 μS/cm LCS (B2E0686-BS1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	Alkalinity, Hydroxide (as CaCO3) < 1.0 mg/L Conductivity (EC) < 2.0 2.0 μS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05	•										
Conductivity (EC) < 2.0	Conductivity (EC) < 2.0 2.0 μS/cm Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 102 80-120	<u>.</u>	•									
LCS (B2E0686-BS1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	LCS (B2E0686-BS1) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 102 80-120		(40 04000)									
Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	Alkalinity, Total (as CaCO3) 96.3 1.0 mg/L 100 96 80-120 LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 102 80-120	,	1)			Prepared	: 2022-05-05	5, Analyze	ed: 2022-	05-05		
LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05	LCS (B2E0686-BS2) Prepared: 2022-05-05, Analyzed: 2022-05-05 Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 102 80-120	•	•	96.3	1.0 mg/L							
	Alkalinity, Total (as CaCO3) 102 1.0 mg/L 100 102 80-120	LCS (B2E0686-RS	2)			Prepared	: 2022-05-05	5. Analvze	ed: 2022-	05-05		
ANABIDIV TOTALIAS CACCEST TO TOTAL TO THOSE THE TOTAL		-	•	102	1.0 ma/l		0 00 00					

REPORTED TO PROJECT	Regional District of 0 Westside Landfill	Central Okana	gan			WORK REPOR	ORDER TED	22E0 2022)223 2-05-10	13:24
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters	s, Batch B2E0686, Con	tinued								
LCS (B2E0686-BS3	3)			Prepared	I: 2022-05-0	5, Analyze	d: 2022-0	5-05		
Alkalinity, Total (as Ca	CO3)	99.3	1.0 mg/L	100		99	80-120			
LCS (B2E0686-BS4	l)			Prepared	I: 2022-05-0	5, Analyze	d: 2022-0	5-05		
Conductivity (EC)	•	1410	2.0 µS/cm	1410		100	95-105			
LCS (B2E0686-BS5	5)			Prepared	I: 2022-05-0	5. Analvze	d: 2022-0	5-05		
Conductivity (EC)	,	1410	2.0 µS/cm	1410		100	95-105			
LCS (B2E0686-BS6	*1			Prenared	I: 2022-05-0	5 Analyze	4· 2022-0	5-05		
Conductivity (EC)	9)	1410	2.0 μS/cm	1410	1. 2022-03-0	100	95-105	J-03		
Duplicate (B2E0686			rce: 22E0223-03	Prepared	1: 2022-05-0	5, Analyze	d: 2022-0			
Alkalinity, Total (as Ca		1330 < 1.0	1.0 mg/L		1330 < 1.0			< 1	10 10	
Alkalinity, Phenolphth Alkalinity, Bicarbonate		1330	1.0 mg/L 1.0 mg/L		1330			< 1	10	
Alkalinity, Carbonate	,	< 1.0	1.0 mg/L		< 1.0			- ' '	10	
Alkalinity, Hydroxide (· ,	< 1.0	1.0 mg/L		< 1.0				10	
Conductivity (EC)		2660	2.0 µS/cm		2700			1	5	
pН		6.90	0.10 pH units		6.94			< 1	4	
Reference (B2E068	86-SRM1)			Prepared	I: 2022-05-0	5, Analyze	d: 2022-0	5-05		
pH		7.02	0.10 pH units	7.01		100	98-102			
Reference (B2E068	86-SRM2)			Prepared	I: 2022-05-0	5, Analyze	d: 2022-0	5-05		
pH	,	6.99	0.10 pH units	7.01		100	98-102			
Reference (B2E068	86-SRM3)			Prepared	I: 2022-05-0	5, Analyze	d: 2022-0	5-05		
pH		7.00	0.10 pH units	7.01		100	98-102			
General Parameters Blank (B2E0947-BL Solids, Total Dissolved	_K1)	< 15	15 mg/L	Prepared	l: 2022-05-0	9, Analyze	d: 2022-0	5-09		
LCS (B2E0947-BS1				Prepared	I: 2022-05-0	9, Analyze	d: 2022-0	5-09		
Solids, Total Dissolved	,	228	15 mg/L	240		95	85-115			
Total Metals, Batch	B2E0478									
Total Metals, Batch				Prepared	I: 2022-05-0	4, Analyze	d: 2022-0	5-04		
•		< 0.04	0.04 mg/L	Prepared	l: 2022-05-0	4, Analyze	d: 2022-0	5-04		
Blank (B2E0478-BL		< 0.04 < 0.002	0.04 mg/L 0.002 mg/L	Prepared	l: 2022-05-0	4, Analyze	d: 2022-0	5-04		
Blank (B2E0478-BL	-K1)			•	l: 2022-05-0 l: 2022-05-0					
Blank (B2E0478-BL Calcium, total Magnesium, total	-K1)			•						
Blank (B2E0478-BL Calcium, total Magnesium, total LCS (B2E0478-BS1	-K1)	< 0.002	0.002 mg/L	Prepared		4, Analyze	d: 2022-0			
Blank (B2E0478-BL Calcium, total Magnesium, total LCS (B2E0478-BS1 Calcium, total	_K1)	< 0.002	0.002 mg/L 0.04 mg/L	Prepared 2.00 2.00		4, Analyze 95 100	d: 2022-0 80-120 80-120	5-05		
Blank (B2E0478-BL Calcium, total Magnesium, total LCS (B2E0478-BS1 Calcium, total Magnesium, total	_K1)	< 0.002	0.002 mg/L 0.04 mg/L	Prepared 2.00 2.00	l: 2022-05-0	4, Analyze 95 100	d: 2022-0 80-120 80-120	5-05		

2022-11-09 13:51 / 7.5°C

CERTIFICATE OF ANALYSIS

REPORTED TO Regional District of Central Okanagan

1450 KLO Road

KELOWNA, BC V1W 3Z4

ATTENTION Angela Lambrecht WORK ORDER 22K1436

PO NUMBER 60022

PROJECT Westside Landfill REPORTED 2022-11-17 11:06

PROJECT INFO 041440062 **COC NUMBER** 000001

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

RECEIVED / TEMP

Ahead of the Curve

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too.

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

By engaging our services, you are agreeing to CARO Analytical Service's Standard Terms and Conditions outlined here: https://www.caro.ca/terms-conditions

If you have any questions or concerns, please contact me at bwhitehead@caro.ca

Authorized By:

Brent Whitehead Account Manager M what

REPORTED TO Regional Dist PROJECT Westside Lan	rict of Central Okanagan ndfill		WORK ORDER REPORTED	22K1436 2022-11-1	7 11:06
Analyte	Result	RL	Units	Analyzed	Qualifier
Duplicate (22K1436-01) Matrix:	: Water Sampled: 2022-11-08 08:30				
Anions					
Chloride	70.1	0.10	mg/L	2022-11-12	
Nitrate (as N)	2.64	0.010	mg/L	2022-11-12	HT1
Sulfate	34.0	1.0	mg/L	2022-11-12	
Calculated Parameters					
Hardness, Total (as CaCO3)	367	0.500	mg/L	N/A	
Dissolved Metals					
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2022-11-15	
Antimony, dissolved	< 0.00020	0.00020		2022-11-15	
Arsenic, dissolved	0.00136	0.00050		2022-11-15	
Barium, dissolved	0.0104	0.0050	mg/L	2022-11-15	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Boron, dissolved	0.0623	0.0500	mg/L	2022-11-15	
Cadmium, dissolved	0.000014	0.000010	mg/L	2022-11-15	
Calcium, dissolved	95.8	0.20	mg/L	2022-11-15	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2022-11-15	
Cobalt, dissolved	0.00011	0.00010	mg/L	2022-11-15	
Copper, dissolved	0.00088	0.00040	mg/L	2022-11-15	
Iron, dissolved	< 0.010	0.010	mg/L	2022-11-15	
Lead, dissolved	< 0.00020	0.00020	mg/L	2022-11-15	
Lithium, dissolved	0.0156	0.00010	mg/L	2022-11-15	
Magnesium, dissolved	31.0	0.010	mg/L	2022-11-15	
Manganese, dissolved	0.00036	0.00020	mg/L	2022-11-15	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2022-11-16	
Molybdenum, dissolved	0.00423	0.00010	mg/L	2022-11-15	
Nickel, dissolved	0.00103	0.00040	mg/L	2022-11-15	
Phosphorus, dissolved	< 0.050	0.050		2022-11-15	
Potassium, dissolved	3.87		mg/L	2022-11-15	
Selenium, dissolved	0.00059	0.00050	mg/L	2022-11-15	
Silicon, dissolved	11.4	1.0	mg/L	2022-11-15	
Silver, dissolved	< 0.000050	0.000050		2022-11-15	
Sodium, dissolved	51.8		mg/L	2022-11-15	
Strontium, dissolved	0.713	0.0010		2022-11-15	
Sulfur, dissolved	11.4		mg/L	2022-11-15	
Tellurium, dissolved	< 0.00050	0.00050		2022-11-15	
Thallium, dissolved	< 0.000020	0.000020		2022-11-15	
Thorium, dissolved	< 0.00010	0.00010		2022-11-15	
Tin, dissolved	< 0.00020	0.00020		2022-11-15	
Titanium, dissolved	< 0.0050	0.0050		2022-11-15	
Tungsten, dissolved	< 0.0010	0.0010		2022-11-15	
Uranium, dissolved	0.00634	0.000020		2022-11-15	
Vanadium, dissolved	< 0.0050	0.0050	mg/L	2022-11-15	Page 2 of 1

REPORTED TO Regional District of Ce PROJECT Westside Landfill	entral Okanagan		WORK ORDER REPORTED	22K1436 2022-11-1	7 11:06
Analyte	Result	RL	Units	Analyzed	Qualifier
Duplicate (22K1436-01) Matrix: Water	Sampled: 2022-11-08 08:3	0, Continued			
Dissolved Metals, Continued					
Zinc, dissolved	< 0.0040	0.0040	mg/L	2022-11-15	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
General Parameters					
Alkalinity, Total (as CaCO3)	341	1.0	mg/L	2022-11-15	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2022-11-15	
Alkalinity, Bicarbonate (as CaCO3)	341		mg/L	2022-11-15	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2022-11-15	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2022-11-15	
Ammonia, Total (as N)	< 0.050	0.050		2022-11-13	
Conductivity (EC)	922		μS/cm	2022-11-15	
pH	8.12		pH units	2022-11-15	HT2
Anions	405	0.40		0000 44 40	
Chloride	165		mg/L	2022-11-12	
Nitrate (as N)	2.78	0.010		2022-11-12	HT1
Sulfate	37.2	1.0	mg/L	2022-11-12	
Calculated Parameters					
Hardness, Total (as CaCO3)	501	0.500	mg/L	N/A	
Dissolved Metals					
Aluminum, dissolved	< 0.0050	0.0050	mg/L	2022-11-15	
Antimony, dissolved	0.00040	0.00020	mg/L	2022-11-15	
Arsenic, dissolved	0.00226	0.00050	mg/L	2022-11-15	
Barium, dissolved	0.0370	0.0050	mg/L	2022-11-15	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Boron, dissolved	0.689	0.0500	mg/L	2022-11-15	
Cadmium, dissolved	0.000096	0.000010	mg/L	2022-11-15	
Calcium, dissolved	127	0.20	mg/L	2022-11-15	
Chromium, dissolved	0.00058	0.00050	mg/L	2022-11-15	
Cobalt, dissolved	0.00173	0.00010	mg/L	2022-11-15	
Copper, dissolved	0.00730	0.00040	mg/L	2022-11-15	
Iron, dissolved	0.657	0.010		2022-11-15	
Lead, dissolved	< 0.00020	0.00020		2022-11-15	
Lithium, dissolved	0.0156	0.00010	mg/L	2022-11-15	
Magnesium, dissolved	44.5	0.010		2022-11-15	
Manganese, dissolved	1.86	0.00020		2022-11-15	
Mercury, dissolved	< 0.000010	0.000010		2022-11-16	
Molybdenum, dissolved	0.00123	0.00010		2022-11-15	
Nickel, dissolved	0.0116	0.00040	mg/L	2022-11-15	

	Regional District of Co Vestside Landfill	entral Okanagan		WORK ORDER REPORTED	22K1436 2022-11-	
Analyte		Result	RL	Units	Analyzed	Qualifier
BH 1 (22K1436-02)	Matrix: Water Sam	pled: 2022-11-08 10:18, C	ontinued			
Dissolved Metals, Con	ntinued					
Phosphorus, dissolve	ed	0.067	0.050	mg/L	2022-11-15	
Potassium, dissolved		10.6	0.10	mg/L	2022-11-15	
Selenium, dissolved		< 0.00050	0.00050	mg/L	2022-11-15	
Silicon, dissolved		14.6	1.0	mg/L	2022-11-15	
Silver, dissolved		< 0.000050	0.000050	mg/L	2022-11-15	
Sodium, dissolved		124	0.10	mg/L	2022-11-15	
Strontium, dissolved		1.10	0.0010	mg/L	2022-11-15	
Sulfur, dissolved		14.3	3.0	mg/L	2022-11-15	
Tellurium, dissolved		< 0.00050	0.00050	mg/L	2022-11-15	
Thallium, dissolved		< 0.000020	0.000020	mg/L	2022-11-15	
Thorium, dissolved		< 0.00010	0.00010	mg/L	2022-11-15	
Tin, dissolved		< 0.00020	0.00020	mg/L	2022-11-15	
Titanium, dissolved		< 0.0050	0.0050	mg/L	2022-11-15	
Tungsten, dissolved		< 0.0010	0.0010	mg/L	2022-11-15	
Uranium, dissolved		0.00100	0.000020	mg/L	2022-11-15	
Vanadium, dissolved		< 0.0050	0.0050	mg/L	2022-11-15	
Zinc, dissolved		< 0.0040	0.0040	mg/L	2022-11-15	
Zirconium, dissolved		0.00130	0.00010	mg/L	2022-11-15	
General Parameters						
Alkalinity, Total (as C	aCO3)	474	1.0	mg/L	2022-11-15	
Alkalinity, Phenolphth	· · · · · · · · · · · · · · · · · · ·	< 1.0		mg/L	2022-11-15	
Alkalinity, Bicarbonat		474		mg/L	2022-11-15	
Alkalinity, Carbonate		< 1.0		mg/L	2022-11-15	
Alkalinity, Hydroxide	,	< 1.0		mg/L	2022-11-15	
Ammonia, Total (as N	· · · · · · · · · · · · · · · · · · ·	0.345	0.050		2022-11-13	
Conductivity (EC)	•/	1500		μS/cm	2022-11-15	
pH		7.95		pH units	2022-11-15	HT2
	Matrix: Water Sam	pled: 2022-11-08 11:26				
Anions						
Chloride		145		mg/L	2022-11-12	
Nitrate (as N)		< 0.010	0.010	mg/L	2022-11-12	HT1
Sulfate		109	1.0	mg/L	2022-11-12	
Calculated Parameter	rs					
Hardness, Total (as 0	CaCO3)	1310	0.500	mg/L	N/A	
Dissolved Metals						
Aluminum, dissolved		0.0053	0.0050	mg/L	2022-11-15	
Antimony, dissolved		< 0.00020	0.00020	mg/L	2022-11-15	
Arsenic, dissolved		0.00165	0.00050		2022-11-15	
Barium, dissolved		0.0088	0.0050		2022-11-15	
			sults Ohviously			Page 4 of 1

REPORTED TO	Regional District of Central Okanagan	WORK ORDER	22K1436
PROJECT	Westside Landfill	REPORTED	2022-11-17 11:06

Analyte	Result	RL	Units	Analyzed	Qualifier
BH 2 (22K1436-03) Matrix: Water Sam	pled: 2022-11-08 11:26,	Continued			
Dissolved Metals, Continued					
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Boron, dissolved	0.387	0.0500	mg/L	2022-11-15	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2022-11-15	
Calcium, dissolved	262	0.20	mg/L	2022-11-15	
Chromium, dissolved	0.00138	0.00050	mg/L	2022-11-15	
Cobalt, dissolved	0.00179	0.00010	mg/L	2022-11-15	
Copper, dissolved	< 0.00040	0.00040	mg/L	2022-11-15	
Iron, dissolved	2.14	0.010	mg/L	2022-11-15	
Lead, dissolved	< 0.00020	0.00020	mg/L	2022-11-15	
Lithium, dissolved	0.0198	0.00010	mg/L	2022-11-15	
Magnesium, dissolved	160	0.010	mg/L	2022-11-15	
Manganese, dissolved	7.30	0.00020	mg/L	2022-11-15	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2022-11-16	
Molybdenum, dissolved	0.00255	0.00010	mg/L	2022-11-15	
Nickel, dissolved	0.0122	0.00040	mg/L	2022-11-15	
Phosphorus, dissolved	0.213	0.050	mg/L	2022-11-15	
Potassium, dissolved	2.94		mg/L	2022-11-15	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2022-11-15	
Silicon, dissolved	23.0		mg/L	2022-11-15	
Silver, dissolved	< 0.000050	0.000050	mg/L	2022-11-15	
Sodium, dissolved	133		mg/L	2022-11-15	
Strontium, dissolved	3.27	0.0010	mg/L	2022-11-15	
Sulfur, dissolved	35.8	3.0	mg/L	2022-11-15	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2022-11-15	
Thallium, dissolved	< 0.000020	0.000020	mg/L	2022-11-15	
Thorium, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Tin, dissolved	< 0.00020	0.00020	mg/L	2022-11-15	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2022-11-15	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2022-11-15	
Uranium, dissolved	0.00269	0.000020	mg/L	2022-11-15	
Vanadium, dissolved	0.0054	0.0050	mg/L	2022-11-15	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2022-11-15	
Zirconium, dissolved	0.00373	0.00010	mg/L	2022-11-15	
General Parameters					
Alkalinity, Total (as CaCO3)	1310	1.0	mg/L	2022-11-15	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2022-11-15	
Alkalinity, Bicarbonate (as CaCO3)	1310	1.0	mg/L	2022-11-15	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2022-11-15	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2022-11-15	
Ammonia, Total (as N)	0.442	0.050		2022-11-13	
Conductivity (EC)	2730		μS/cm	2022-11-15	

REPORTED TO PROJECT	Regional District Westside Landfill	of Central Okanagan		WORK ORDER REPORTED	22K1436 2022-11-1	7 11:06
Analyte		Result	RL	Units	Analyzed	Qualifier
BH 2 (22K1436-03	3) Matrix: Water	Sampled: 2022-11-08 11:26, Co	ntinued			
General Parameters	s, Continued					
рН		7.52	0.10	pH units	2022-11-15	HT2
	l) Matrix: Water	Sampled: 2022-11-08 08:25				
Anions						
Chloride		74.3	0.10	mg/L	2022-11-12	
Nitrate (as N)		2.65	0.010		2022-11-12	HT1
Sulfate		34.1		mg/L	2022-11-12	
		V-1.1	1.0	9/2	2022 11 12	
Calculated Parame	ters					
Hardness, Total (a	s CaCO3)	370	0.500	mg/L	N/A	
Dissolved Metals						
Aluminum, dissolv	ed	< 0.0050	0.0050	ma/l	2022-11-15	
Antimony, dissolve		< 0.00020	0.00020		2022-11-15	
Arsenic, dissolved		0.00140	0.00050		2022-11-15	
Barium, dissolved		0.0106	0.0050		2022-11-15	
Beryllium, dissolve	ed	< 0.00010	0.00010		2022-11-15	
Bismuth, dissolved		< 0.00010	0.00010		2022-11-15	
Boron, dissolved		0.0686	0.0500		2022-11-15	
Cadmium, dissolve	 ed	0.000013	0.000010		2022-11-15	
Calcium, dissolved		97.5		mg/L	2022-11-15	
Chromium, dissolv		< 0.00050	0.00050		2022-11-15	
Cobalt, dissolved		0.00011	0.00010		2022-11-15	
Copper, dissolved		0.00090	0.00040		2022-11-15	
Iron, dissolved		< 0.010	0.010		2022-11-15	
Lead, dissolved		< 0.00020	0.00020		2022-11-15	
Lithium, dissolved		0.0165	0.00010		2022-11-15	
Magnesium, disso	lved	30.7	0.010	mg/L	2022-11-15	
Manganese, disso	lved	0.00041	0.00020		2022-11-16	
Mercury, dissolved		< 0.000010	0.000010		2022-11-16	
Molybdenum, diss		0.00425	0.00010		2022-11-15	
Nickel, dissolved		0.00107	0.00040		2022-11-15	
Phosphorus, disso	lved	< 0.050	0.050		2022-11-15	
Potassium, dissolv	/ed	4.06		mg/L	2022-11-15	
Selenium, dissolve	ed	0.00056	0.00050		2022-11-15	
Silicon, dissolved		11.6		mg/L	2022-11-15	
Silver, dissolved		< 0.000050	0.000050	mg/L	2022-11-15	
Sodium, dissolved		52.2	0.10	mg/L	2022-11-15	
Strontium, dissolve	ed	0.729	0.0010	mg/L	2022-11-15	
Sulfur, dissolved		11.6	3.0	mg/L	2022-11-15	
Tellurium, dissolve	d	< 0.00050	0.00050	mg/L	2022-11-15	
Thallium, dissolved		< 0.000020	0.000020	mg/L	2022-11-15	

Regional District of Central Okanagan

TEST RESULTS

REPORTED TO

Analyte	Result	RL	Units	Analyzed	Qualifie
BH 3 (22K1436-04) Matrix: Water Samp	oled: 2022-11-08 08:25, Cor	ntinued			
Dissolved Metals, Continued					
Thorium, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Tin, dissolved	< 0.00020	0.00020	mg/L	2022-11-15	
Titanium, dissolved	< 0.0050	0.0050	mg/L	2022-11-15	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2022-11-15	
Uranium, dissolved	0.00631	0.000020	mg/L	2022-11-15	
Vanadium, dissolved	< 0.0050	0.0050	mg/L	2022-11-15	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2022-11-15	
Zirconium, dissolved	< 0.00010	0.00010		2022-11-15	
General Parameters					
Alkalinity, Total (as CaCO3)	340	1.0	mg/L	2022-11-15	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0		mg/L	2022-11-15	
Alkalinity, Bicarbonate (as CaCO3)	340		mg/L	2022-11-15	
Alkalinity, Carbonate (as CaCO3)	< 1.0		mg/L	2022-11-15	
Alkalinity, Hydroxide (as CaCO3)	< 1.0		mg/L	2022-11-15	
Ammonia, Total (as N)	< 0.050	0.050		2022-11-13	
Conductivity (EC)	921		μS/cm	2022-11-15	
00	v- ·		p. 0, 0		
pH BH 4 (22K1436-05) Matrix: Water Samp	8.12 pled: 2022-11-08 08:53	0.10	pH units	2022-11-15	HT2
BH 4 (22K1436-05) Matrix: Water Samp	oled: 2022-11-08 08:53				HT2
BH 4 (22K1436-05) Matrix: Water Samp Anions Chloride	oled: 2022-11-08 08:53	0.10	mg/L	2022-11-12	
BH 4 (22K1436-05) Matrix: Water Samp Anions Chloride Nitrate (as N)	279 0.584	0.10 0.010	mg/L mg/L	2022-11-12 2022-11-12	HT2
Anions Chloride Nitrate (as N) Sulfate	oled: 2022-11-08 08:53	0.10 0.010	mg/L	2022-11-12	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters	279 0.584 83.3	0.10 0.010 1.0	mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3)	279 0.584	0.10 0.010	mg/L mg/L mg/L	2022-11-12 2022-11-12	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals	279 0.584 83.3	0.10 0.010 1.0 0.500	mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved	279 0.584 83.3 908	0.10 0.010 1.0 0.500	mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020	0.10 0.010 1.0 0.500 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020 < 0.00050	0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020 < 0.00050 0.0419	0.10 0.010 1.0 0.500 0.0050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020 < 0.00050 0.0419 < 0.00010	0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.0050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020 < 0.00050 0.0419 < 0.00010 < 0.00010	0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.00050 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Boron, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020 < 0.00050 0.0419 < 0.00010 < 0.00010 0.493	0.10 0.010 1.0 0.500 0.0050 0.00020 0.0050 0.0050 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved	279 0.584 83.3 908 <0.0050 <0.00020 <0.00050 0.0419 <0.00010 <0.00010 0.493 0.000075	0.10 0.010 1.0 0.500 0.0050 0.00050 0.0050 0.00010 0.0500 0.000010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020 < 0.00050 0.0419 < 0.00010 < 0.00010 0.493 0.000075 174	0.10 0.010 1.0 0.500 0.0050 0.00020 0.00050 0.0050 0.00010 0.0500 0.000010 0.000010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Calcium, dissolved Calcium, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020 < 0.00050 0.0419 < 0.00010 < 0.00010 0.493 0.000075 174 < 0.00050	0.10 0.010 1.0 0.500 0.0050 0.00050 0.0050 0.00010 0.0500 0.00010 0.00010 0.000010 0.000010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Cadmium, dissolved Catomium, dissolved Calcium, dissolved Chromium, dissolved Chromium, dissolved Cobalt, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020 < 0.00050 0.0419 < 0.00010 < 0.00010 0.493 0.000075 174 < 0.00050 0.00142	0.10 0.010 1.0 0.500 0.0050 0.00050 0.0050 0.00010 0.0500 0.00010 0.20 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Bismuth, dissolved Boron, dissolved Cadmium, dissolved Cadmium, dissolved Cadmium, dissolved Catomium, dissolved Calcium, dissolved Calcium, dissolved Chromium, dissolved Cobalt, dissolved Copper, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020 < 0.00050 0.0419 < 0.00010 0.493 0.000075 174 < 0.00050 0.00142 0.00166	0.10 0.010 1.0 0.500 0.0050 0.00050 0.0050 0.00010 0.0500 0.000010 0.20 0.00050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15	
Anions Chloride Nitrate (as N) Sulfate Calculated Parameters Hardness, Total (as CaCO3) Dissolved Metals Aluminum, dissolved Antimony, dissolved Barium, dissolved Beryllium, dissolved Beryllium, dissolved Bismuth, dissolved Cadmium, dissolved Cadmium, dissolved Calcium, dissolved Calcium, dissolved Calcium, dissolved Chromium, dissolved Cobalt, dissolved	279 0.584 83.3 908 < 0.0050 < 0.00020 < 0.00050 0.0419 < 0.00010 < 0.00010 0.493 0.000075 174 < 0.00050 0.00142	0.10 0.010 1.0 0.500 0.0050 0.00050 0.0050 0.00010 0.0500 0.00010 0.20 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15	

WORK ORDER

22K1436

REPORTED TO	Regional District of Central Okanagan	WORK ORDER	22K1436
PROJECT	Westside Landfill	REPORTED	2022-11-17 11:06

Analyte	Result	RL	Units	Analyzed	Qualifi
BH 4 (22K1436-05) Matrix: Water Samp	oled: 2022-11-08 08:53, Cor	ntinued			
Dissolved Metals, Continued					
Lithium, dissolved	0.0345	0.00010	mg/L	2022-11-15	
Magnesium, dissolved	115	0.010	mg/L	2022-11-15	
Manganese, dissolved	0.435	0.00020	mg/L	2022-11-15	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2022-11-16	
Molybdenum, dissolved	0.00636	0.00010	mg/L	2022-11-15	
Nickel, dissolved	0.0171	0.00040	mg/L	2022-11-15	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2022-11-15	
Potassium, dissolved	5.68		mg/L	2022-11-15	
Selenium, dissolved	< 0.00050	0.00050		2022-11-15	
Silicon, dissolved	11.0		mg/L	2022-11-15	
Silver, dissolved	< 0.000050	0.000050		2022-11-15	
Sodium, dissolved	101	0.10	mg/L	2022-11-15	
Strontium, dissolved	2.22	0.0010		2022-11-15	
Sulfur, dissolved	30.2		mg/L	2022-11-15	
Tellurium, dissolved	< 0.00050	0.00050		2022-11-15	
Thallium, dissolved	0.000023	0.000020		2022-11-15	
Thorium, dissolved	< 0.00010	0.00010		2022-11-15	
Tin, dissolved	< 0.00020	0.00020		2022-11-15	
Titanium, dissolved	< 0.0050	0.0050		2022-11-15	
Tungsten, dissolved	< 0.0010	0.0010	mg/L	2022-11-15	
Uranium, dissolved	0.0256	0.000020		2022-11-15	
Vanadium, dissolved	< 0.0050	0.0050		2022-11-15	
Zinc, dissolved	< 0.0040	0.0040		2022-11-15	
Zirconium, dissolved	0.00046	0.00010		2022-11-15	
eneral Parameters					
Alkalinity, Total (as CaCO3)	586	1.0	mg/L	2022-11-15	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0	mg/L	2022-11-15	
Alkalinity, Bicarbonate (as CaCO3)	586	1.0	mg/L	2022-11-15	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0	mg/L	2022-11-15	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0	mg/L	2022-11-15	
Ammonia, Total (as N)	< 0.050	0.050		2022-11-13	
Conductivity (EC)	2010		μS/cm	2022-11-15	
pH	8.05	0.10	pH units	2022-11-15	HT2
H 5 (22K1436-06) Matrix: Water Samp	oled: 2022-11-08 09:13				
Anions Chloride	114	0.10	mg/L	2022-11-12	
Nitrate (as N)	5.62	0.010		2022-11-12	HT1
Sulfate	27.9		mg/L	2022-11-12	- 11111

REPORTED TORegional District of Central OkanaganWORK ORDER22K1436PROJECTWestside LandfillREPORTED2022-11-17 11:06

Analyte	Result	RL	Units	Analyzed	Qualifier
BH 5 (22K1436-06) Matrix: Water	Sampled: 2022-11-08 09:13, Co	ntinued			
Calculated Parameters, Continued					
Hardness, Total (as CaCO3)	331	0.500	mg/L	N/A	
Dissolved Metals					
Aluminum, dissolved	0.0076	0.0050	mg/L	2022-11-15	
Antimony, dissolved	< 0.00020	0.00020		2022-11-15	
Arsenic, dissolved	0.00123	0.00050		2022-11-15	
Barium, dissolved	0.0117	0.0050	mg/L	2022-11-15	
Beryllium, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Bismuth, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Boron, dissolved	< 0.0500	0.0500	mg/L	2022-11-15	
Cadmium, dissolved	< 0.000010	0.000010	mg/L	2022-11-15	
Calcium, dissolved	89.2	0.20	mg/L	2022-11-15	
Chromium, dissolved	0.00051	0.00050	mg/L	2022-11-15	
Cobalt, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	
Copper, dissolved	0.00065	0.00040	mg/L	2022-11-15	
Iron, dissolved	< 0.010	0.010	mg/L	2022-11-15	
Lead, dissolved	< 0.00020	0.00020	mg/L	2022-11-15	
Lithium, dissolved	0.0198	0.00010	mg/L	2022-11-15	
Magnesium, dissolved	26.3	0.010	mg/L	2022-11-15	
Manganese, dissolved	0.00045	0.00020	mg/L	2022-11-16	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2022-11-16	
Molybdenum, dissolved	0.00602	0.00010	mg/L	2022-11-15	
Nickel, dissolved	< 0.00040	0.00040	mg/L	2022-11-15	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2022-11-15	
Potassium, dissolved	2.55	0.10	mg/L	2022-11-15	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2022-11-15	
Silicon, dissolved	8.8	1.0	mg/L	2022-11-15	
Silver, dissolved	< 0.000050	0.000050	mg/L	2022-11-15	
Sodium, dissolved	50.8	0.10	mg/L	2022-11-15	
Strontium, dissolved	0.493	0.0010	mg/L	2022-11-15	
Sulfur, dissolved	9.5	3.0	mg/L	2022-11-15	
Tellurium, dissolved	< 0.00050	0.00050	mg/L	2022-11-15	
Thallium, dissolved	< 0.000020	0.000020		2022-11-15	
Thorium, dissolved	< 0.00010	0.00010		2022-11-15	
Tin, dissolved	< 0.00020	0.00020		2022-11-15	
Titanium, dissolved	< 0.0050	0.0050		2022-11-15	
Tungsten, dissolved	< 0.0010	0.0010		2022-11-15	
Uranium, dissolved	0.00467	0.000020	mg/L	2022-11-15	
Vanadium, dissolved	0.0055	0.0050	mg/L	2022-11-15	
Zinc, dissolved	< 0.0040	0.0040	mg/L	2022-11-15	
Zirconium, dissolved	< 0.00010	0.00010	mg/L	2022-11-15	

General Parameters

Alkalinity, Total (as CaCO3) **247** 1.0 mg/L 2022-11-15

REPORTED TO PROJECT	Regional District of Ce Westside Landfill	ntral Okanagan		WORK ORDER REPORTED	22K1436 2022-11-1	7 11:06
Analyte		Result	RL	Units	Analyzed	Qualifier
BH 5 (22K1436-06) Matrix: Water Sam _l	oled: 2022-11-08 09:13, 0	Continued			
General Parameters	s, Continued					
Alkalinity, Phenolph	nthalein (as CaCO3)	< 1.0	1.0	mg/L	2022-11-15	
Alkalinity, Bicarbon	· · · · · · · · · · · · · · · · · · ·	247		mg/L	2022-11-15	
Alkalinity, Carbonat		< 1.0		mg/L	2022-11-15	
Alkalinity, Hydroxid		< 1.0		mg/L	2022-11-15	
Ammonia, Total (as		< 0.050	0.050		2022-11-13	
Conductivity (EC)	,	897		μS/cm	2022-11-15	
pH		8.17		pH units	2022-11-15	HT2
BH 7 (22K1436-07 Anions) Matrix: Water Sam _l	oled: 2022-11-08 10:48				
Chloride		66.8	0.10	mg/L	2022-11-12	
Nitrate (as N)		4.24	0.010	mg/L	2022-11-12	HT1
Sulfate		40.4	1.0	mg/L	2022-11-12	
Calculated Paramet	ers					
Hardness, Total (as	s CaCO3)	479	0.500	ma/L	N/A	
Dissolved Metals Aluminum, dissolved Antimony, dissolved		< 0.0050 < 0.00020	0.0050 0.00020		2022-11-15 2022-11-15	
Arsenic, dissolved		0.00205	0.00050		2022-11-15	
Barium, dissolved		0.0208	0.0050		2022-11-15	
Beryllium, dissolve	d	< 0.00010	0.00010		2022-11-15	
Bismuth, dissolved		< 0.00010	0.00010		2022-11-15	
Boron, dissolved		0.0579	0.0500		2022-11-15	
Cadmium, dissolve		0.00047	0.000010		2022-11-15	
Calcium, dissolved		120		mg/L	2022-11-15	
Chromium, dissolved		< 0.00050	0.00050		2022-11-15	
Cobalt, dissolved	<u> </u>	0.00056	0.00010		2022-11-15	
Copper, dissolved		0.00056	0.00010		2022-11-15	
Iron, dissolved		< 0.010	0.00040		2022-11-15	
· · · · · · · · · · · · · · · · · · ·			0.00020			
Lead, dissolved		< 0.00020			2022-11-15	
Lithium, dissolved	wod	0.0187	0.00010		2022-11-15	
Magnesium, dissol		43.4	0.010		2022-11-15	
Manganese, dissol Mercury, dissolved		0.0889 < 0.000010	0.00020		2022-11-15	
,			0.000010		2022-11-16	
Molybdenum, disso	NAGA	0.00167	0.00010		2022-11-15	
Nickel, dissolved	lyad	0.00284	0.00040		2022-11-15	
Phosphorus, dissolvent		0.090	0.050		2022-11-15	
Potassium, dissolve		2.48		mg/L	2022-11-15	
Selenium, dissolve	u	0.00091	0.00050		2022-11-15	
Silicon, dissolved		12.8	1.0	mg/L	2022-11-15	

	Regional District of Central Oka Vestside Landfill	nagan		WORK ORDER REPORTED	22K1436 2022-11-1	7 11:06
Analyte	F	esult	RL	Units	Analyzed	Qualifier
BH 7 (22K1436-07)	Matrix: Water Sampled: 202	2-11-08 10:48, Continued				
Dissolved Metals, Cor	ntinued					
Silver, dissolved	< 0.0	000050	0.000050	mg/L	2022-11-15	
Sodium, dissolved		61.5		mg/L	2022-11-15	
Strontium, dissolved		0.852	0.0010	mg/L	2022-11-15	
Sulfur, dissolved		13.6		mg/L	2022-11-15	
Tellurium, dissolved	< 0	.00050	0.00050		2022-11-15	
Thallium, dissolved	< 0.0	000020	0.000020		2022-11-15	
Thorium, dissolved		.00010	0.00010		2022-11-15	
Tin, dissolved		.00020	0.00020		2022-11-15	
Titanium, dissolved		0.0050	0.0050		2022-11-15	
Tungsten, dissolved		0.0010	0.0010		2022-11-15	
Uranium, dissolved		.00951	0.000020		2022-11-15	
Vanadium, dissolved		0.0117	0.0050		2022-11-15	
Zinc, dissolved	<	0.0040	0.0040		2022-11-15	
Zirconium, dissolved		.00018	0.00010		2022-11-15	
General Parameters			0.000.0			
Alkalinity, Total (as Ca	aCO3)	454	1.0	mg/L	2022-11-15	
Alkalinity, Phenolphth	•	< 1.0		mg/L	2022-11-15	
Alkalinity, Bicarbonate	· · · · · · · · · · · · · · · · · · ·	454		mg/L	2022-11-15	
Alkalinity, Carbonate	<u> </u>	< 1.0		mg/L	2022-11-15	
Alkalinity, Hydroxide	· · · · · · · · · · · · · · · · · · ·	< 1.0		mg/L	2022-11-15	
Ammonia, Total (as N		: 0.050	0.050		2022-11-13	
Conductivity (EC)	,	1110		μS/cm	2022-11-15	
pH		8.21		pH units	2022-11-15	HT2
MM-99-2 (22K1436-0	08) Matrix: Water Sampled:	2022-11-08 09:40				
Chloride		124	0.10	mg/L	2022-11-12	
		124 0.247	0.10		2022-11-12 2022-11-12	HT1
Chloride			0.010			HT1
Chloride Nitrate (as N) Sulfate	s	0.247	0.010	mg/L	2022-11-12	HT1
Chloride Nitrate (as N) Sulfate		0.247	0.010	mg/L mg/L	2022-11-12	HT1
Chloride Nitrate (as N) Sulfate Calculated Parameter Hardness, Total (as C		0.247 18.2	0.010	mg/L mg/L	2022-11-12 2022-11-12	HT1
Chloride Nitrate (as N) Sulfate Calculated Parameter Hardness, Total (as C		0.247 18.2	0.010	mg/L mg/L mg/L	2022-11-12 2022-11-12	HT1
Chloride Nitrate (as N) Sulfate Calculated Parameter Hardness, Total (as C	CaCO3)	0.247 18.2 696	0.010 1.0 0.500	mg/L mg/L mg/L	2022-11-12 2022-11-12 N/A	HT1
Chloride Nitrate (as N) Sulfate Calculated Parameter Hardness, Total (as C Dissolved Metals Aluminum, dissolved	CaCO3)	0.247 18.2 696 0.0250	0.010 1.0 0.500	mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 N/A 2022-11-15	HT1
Chloride Nitrate (as N) Sulfate Calculated Parameter Hardness, Total (as C Dissolved Metals Aluminum, dissolved Antimony, dissolved	CaCO3)	0.247 18.2 696 0.0250	0.010 1.0 0.500 0.0050 0.00020	mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15	HT1
Chloride Nitrate (as N) Sulfate Calculated Parameter Hardness, Total (as C Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved	CaCO3) <0 <0	0.247 18.2 696 0.0250 .00020	0.010 1.0 0.500 0.0050 0.00020 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15	HT1
Chloride Nitrate (as N) Sulfate Calculated Parameter. Hardness, Total (as C Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved	<pre>caCO3)</pre>	0.247 18.2 696 0.0250 .00020 .00050 0.0102	0.010 1.0 0.500 0.0050 0.00020 0.00050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15	HT1
Chloride Nitrate (as N) Sulfate Calculated Parameter Hardness, Total (as C Dissolved Metals Aluminum, dissolved Antimony, dissolved Arsenic, dissolved Barium, dissolved Beryllium, dissolved	<pre>CaCO3)</pre>	0.247 18.2 696 0.0250 .00020 .00050 0.0102	0.010 1.0 0.500 0.0050 0.00020 0.00050 0.0050 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	2022-11-12 N/A 2022-11-15 2022-11-15 2022-11-15 2022-11-15 2022-11-15	HT1

Regional District of Central Okanagan

Westside Landfill

TEST RESULTS

REPORTED TO

PROJECT

Analyte	Result	RL	Units	Analyzed	Qualifie
MM-99-2 (22K1436-08) Matrix: W	/ater Sampled: 2022-11-08 09:40,	Continued			
Dissolved Metals, Continued					
Calcium, dissolved	133	0.20	mg/L	2022-11-15	
Chromium, dissolved	< 0.00050	0.00050	mg/L	2022-11-15	
Cobalt, dissolved	0.00012	0.00010	mg/L	2022-11-15	
Copper, dissolved	0.00408	0.00040	mg/L	2022-11-15	
Iron, dissolved	0.033	0.010	mg/L	2022-11-15	
Lead, dissolved	0.00026	0.00020	mg/L	2022-11-15	
Lithium, dissolved	0.0414	0.00010	mg/L	2022-11-15	
Magnesium, dissolved	88.0	0.010	mg/L	2022-11-15	
Manganese, dissolved	0.0118	0.00020	mg/L	2022-11-15	
Mercury, dissolved	< 0.000010	0.000010	mg/L	2022-11-16	
Molybdenum, dissolved	0.00025	0.00010	mg/L	2022-11-15	
Nickel, dissolved	0.00044	0.00040	mg/L	2022-11-15	
Phosphorus, dissolved	< 0.050	0.050	mg/L	2022-11-15	
Potassium, dissolved	0.53	0.10	mg/L	2022-11-15	
Selenium, dissolved	< 0.00050	0.00050	mg/L	2022-11-15	
Silicon, dissolved	6.5	1.0	mg/L	2022-11-15	
Silver, dissolved	< 0.000050	0.000050	mg/L	2022-11-15	
Sodium, dissolved	45.3	0.10	mg/L	2022-11-15	

2.04

6.2

< 0.00050

< 0.000020

< 0.00010

< 0.00020

< 0.0050

< 0.0010

0.00662

< 0.0050

0.0109

0.00031

General Parameters

Zinc, dissolved

Strontium, dissolved

Tellurium, dissolved

Thallium, dissolved

Thorium, dissolved

Titanium, dissolved

Tungsten, dissolved

Uranium, dissolved

Vanadium, dissolved

Zirconium, dissolved

Tin, dissolved

Sulfur, dissolved

General Parameters				
Alkalinity, Total (as CaCO3)	542	1.0 mg/L	2022-11-15	
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L	2022-11-15	
Alkalinity, Bicarbonate (as CaCO3)	542	1.0 mg/L	2022-11-15	
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L	2022-11-15	
Alkalinity, Hydroxide (as CaCO3)	< 1.0	1.0 mg/L	2022-11-15	
Ammonia, Total (as N)	< 0.050	0.050 mg/L	2022-11-13	
Conductivity (EC)	1350	2.0 μS/cm	2022-11-15	
pH	8.08	0.10 pH units	2022-11-15	HT2

22K1436

2022-11-15

2022-11-15

2022-11-15

2022-11-15

2022-11-15

2022-11-15

2022-11-15

2022-11-15

2022-11-15

2022-11-15

2022-11-15

2022-11-15

2022-11-17 11:06

WORK ORDER

REPORTED

0.0010 mg/L

0.00050 mg/L

0.000020 mg/L

0.00010 mg/L

0.00020 mg/L

0.0050 mg/L

0.0010 mg/L

0.0050 mg/L

0.0040 mg/L

0.00010 mg/L

0.000020 mg/L

3.0 mg/L

REPORTED TO Regional District of Central Okanagan

PROJECT Westside Landfill REPORTED 2022-11-17 11:06

Sample Qualifiers:

HT1 The sample was prepared and/or analyzed past the recommended holding time.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is

WORK ORDER

22K1436

recommended.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Regional District of Central Okanagan

PROJECT Westside Landfill

WORK ORDER REPORTED 22K1436

2022-11-17 11:06

Analysis Description	Method Ref.	Technique	Accredited	Location
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	✓	Kelowna
Ammonia, Total in Water	SM 4500-NH3 G* (2017)	Automated Colorimetry (Phenate)	✓	Kelowna
Anions in Water	SM 4110 B (2017)	Ion Chromatography	✓	Kelowna
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	✓	Kelowna
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond
Hardness in Water	SM 2340 B (2017)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	✓	N/A
Mercury, dissolved in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
pH in Water	SM 4500-H+ B (2017)	Electrometry	✓	Kelowna

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

mg/L Milligrams per litre

pH units pH < 7 = acidic, ph > 7 = basic μ S/cm Microsiemens per centimetre

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

General Comments:

The results in this report apply to the received samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline (s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

REPORTED TO Regional District of Central Okanagan **PROJECT**

Westside Landfill

WORK ORDER REPORTED

22K1436 2022-11-17 11:06

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- Duplicate (Dup): An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
		Prepared	l: 2022-11-1	1, Analyzed	d: 2022-1	1-11		
< 0.10	0.10 mg/L							
< 0.010	0.010 mg/L							
< 1.0	1.0 mg/L							
		Prepared	l: 2022-11-1	2, Analyze	d: 2022 - 1	1-12		
< 0.10	0.10 mg/L							
< 0.010	0.010 mg/L							
< 1.0	1.0 mg/L							
		Prepared	l: 2022-11-1	1, Analyzed	d: 2022-1	1-11		
15.6	0.10 mg/L	16.0		97	90-110			
4.08	0.010 mg/L	4.00		102	90-110			
15.7	1.0 mg/L	16.0		98	90-110			
		Prepared	l: 2022-11-1	2, Analyze	d: 2022 - 1	1-12		
15.3	0.10 mg/L	16.0		95	90-110			
4.10	0.010 mg/L	4.00		102	90-110			
16.2	1.0 mg/L	16.0		102	90-110			
	< 0.10 < 0.010 < 1.0 < 0.10 < 0.010 < 1.0 15.6 4.08 15.7	< 0.10	Prepared	Prepared: 2022-11-1	Prepared: 2022-11-11, Analyzed	Prepared: 2022-11-11, Analyzed: 2022-1 < 0.10	Prepared: 2022-11-11, Analyzed: 2022-11-11	Prepared: 2022-11-11, Analyzed: 2022-11-11

Dissolved Metals, Batch B2K1629

		Prepared: 2022-11-15, Analyzed: 2022-11-15
< 0.0050	0.0050 mg/L	
< 0.00020	0.00020 mg/L	
< 0.00050	0.00050 mg/L	
< 0.0050	0.0050 mg/L	
< 0.00010	0.00010 mg/L	
< 0.00010	0.00010 mg/L	
< 0.0500	0.0500 mg/L	
< 0.000010	0.000010 mg/L	
< 0.20	0.20 mg/L	
< 0.00050	0.00050 mg/L	
< 0.00010	0.00010 mg/L	
< 0.00040	0.00040 mg/L	
< 0.010	0.010 mg/L	
< 0.00020	0.00020 mg/L	
	< 0.00020 < 0.00050 < 0.0050 < 0.00010 < 0.00010 < 0.0500 < 0.000010 < 0.000010 < 0.000010 < 0.00050 < 0.00050 < 0.00010 < 0.00040 < 0.0010	 < 0.00020 mg/L < 0.00050 mg/L < 0.00050 mg/L < 0.0050 mg/L < 0.0050 mg/L < 0.00010 mg/L < 0.00010 mg/L < 0.00010 mg/L < 0.0500 mg/L < 0.0500 mg/L < 0.0500 mg/L < 0.0500 mg/L < 0.00010 mg/L < 0.000010 mg/L < 0.000010 mg/L < 0.000010 mg/L < 0.20 mg/L < 0.00050 mg/L < 0.00050 mg/L < 0.00050 mg/L < 0.00050 mg/L < 0.00040 mg/L < 0.00040 mg/L < 0.010 mg/L < 0.010 mg/L

REPORTED TO Regional Distric PROJECT Westside Landf	t of Central Okar ill	nagan			WORK ORDER REPORTED		22K1436 2022-11-17 11:06		
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B2K1629, Co	ontinued								
Blank (B2K1629-BLK1), Continued			Prepared	l: 2022-11-1	5, Analyze	d: 2022-1	1-15		
Lithium, dissolved	< 0.00010	0.00010 mg/L							
Magnesium, dissolved	< 0.010	0.010 mg/L							
Manganese, dissolved	< 0.00020	0.00020 mg/L							
Molybdenum, dissolved	< 0.00010	0.00010 mg/L							
Nickel, dissolved	< 0.00040	0.00040 mg/L							
Phosphorus, dissolved	< 0.050	0.050 mg/L							
Potassium, dissolved	< 0.10	0.10 mg/L							
Selenium, dissolved	< 0.00050	0.00050 mg/L							
Silicon, dissolved	< 1.0	1.0 mg/L							
Silver, dissolved	< 0.000050	0.000050 mg/L							
Sodium, dissolved	0.19	0.10 mg/L							BLK
Strontium, dissolved	< 0.0010	0.0010 mg/L							
Sulfur, dissolved	< 3.0	3.0 mg/L							
Tellurium, dissolved	< 0.00050	0.00050 mg/L							
Thallium, dissolved	< 0.000020	0.000020 mg/L							
Thorium, dissolved	< 0.00010	0.00010 mg/L							
Tin, dissolved	< 0.00020	0.00020 mg/L							
Titanium, dissolved	< 0.0050	0.0050 mg/L							
Tungsten, dissolved	< 0.0010	0.0010 mg/L							
Uranium, dissolved	< 0.000020	0.000020 mg/L							
Vanadium, dissolved	< 0.0050	0.0050 mg/L							
Zinc, dissolved Zirconium, dissolved	< 0.0040 < 0.00010	0.0040 mg/L 0.00010 mg/L							
LCS (B2K1629-BS1) Aluminum, dissolved	4.15	0.0050 mg/L	Prepared 4.00	l: 2022-11-1	5, Analyze 104	d: 2022-1 80-120	1-15		
Antimony, dissolved	0.0408	0.00020 mg/L	0.0400		102	80-120			
Arsenic, dissolved	0.0423	0.00050 mg/L	0.0400		106	80-120			
Barium, dissolved	0.0408	0.0050 mg/L	0.0400		102	80-120			
Beryllium, dissolved	0.0403	0.00010 mg/L	0.0400		101	80-120			
Bismuth, dissolved	0.0402	0.00010 mg/L	0.0400		100	80-120			
Boron, dissolved	< 0.0500	0.0500 mg/L	0.0400		109	80-120			
Cadmium, dissolved	0.0405	0.000010 mg/L	0.0400		101	80-120			
Calcium, dissolved	4.03	0.20 mg/L	4.00		101	80-120			
Chromium, dissolved	0.0412	0.00050 mg/L	0.0400		103	80-120			
Cobalt, dissolved	0.0406	0.00010 mg/L	0.0400		101	80-120			
Copper, dissolved	0.0408	0.00040 mg/L	0.0400		102	80-120			
Iron, dissolved	4.12	0.010 mg/L	4.00		103	80-120			
Lead, dissolved	0.0408	0.00020 mg/L	0.0400		102	80-120			
Lithium, dissolved	0.0411	0.00010 mg/L	0.0400		103	80-120			
Magnesium, dissolved	4.00	0.010 mg/L	4.00		100	80-120			
Manganese, dissolved Molybdenum, dissolved	0.0414 0.0400	0.00020 mg/L 0.00010 mg/L	0.0400 0.0400		103 100	80-120 80-120			
Nickel, dissolved	0.0400	0.00010 Hig/L 0.00040 mg/L	0.0400		102	80-120			
Phosphorus, dissolved	4.16	0.050 mg/L	4.00		104	80-120			
Potassium, dissolved	4.18	0.050 mg/L 0.10 mg/L	4.00		104	80-120			
Selenium, dissolved	0.0394	0.00050 mg/L	0.0400		98	80-120			
Silicon, dissolved	4.1	1.0 mg/L	4.00		101	80-120			
Silver, dissolved	0.0403	0.000050 mg/L	0.0400		101	80-120			
· · · · · · · · · · · · · · · · · · ·	0.0100		4.00		102	80-120			
Sodium, dissolved	4 10	U.TU ma/i							
Sodium, dissolved Strontium, dissolved	4.10 0.0419	0.10 mg/L 0.0010 mg/L	0.0400		105	80-120			
Sodium, dissolved Strontium, dissolved Sulfur, dissolved		0.10 mg/L 0.0010 mg/L 3.0 mg/L	0.0400 40.0		105 101	80-120 80-120			
Strontium, dissolved	0.0419	0.0010 mg/L							
Strontium, dissolved Sulfur, dissolved	0.0419 40.5	0.0010 mg/L 3.0 mg/L	40.0		101	80-120			
Strontium, dissolved Sulfur, dissolved Tellurium, dissolved	0.0419 40.5 0.0408	0.0010 mg/L 3.0 mg/L 0.00050 mg/L	40.0 0.0400		101 102	80-120 80-120			

REPORTED TO PROJECT	Regional District of Westside Landfill	[:] Central Okar	nagan			WORK ORDER REPORTED			22K1436 2022-11-17 11:06		
Analyte		Result	RL Un	its Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier	
Dissolved Metals,	Batch B2K1629, Conti	inued									
LCS (B2K1629-BS	1), Continued			Prepared	l: 2022-11-1	5, Analyze	d: 2022-1	1-15			
Titanium, dissolved		0.0408	0.0050 mg/	L 0.0400		102	80-120				
Tungsten, dissolved		0.0413	0.0010 mg/			103	80-120				
Uranium, dissolved		0.0406	0.000020 mg/			101	80-120				
Vanadium, dissolved Zinc, dissolved	1	0.0408 0.0418	0.0050 mg/ 0.0040 mg/			102 104	80-120 80-120				
Zirconium, dissolved	İ	0.0408	0.00010 mg/			102	80-120				
Dissolved Metals,	Batch B2K1664										
Blank (B2K1664-B	BLK1)			•	l: 2022-11-1	5, Analyze	d: 2022-1	1-16			
Mercury, dissolved		< 0.000010	0.000010 mg/								
Blank (B2K1664-B	SLK2)				l: 2022-11-1	5, Analyze	d: 2022-1	1-16			
Mercury, dissolved		< 0.000010	0.000010 mg/								
Blank (B2K1664-B	BLK3)				l: 2022-11-1	5, Analyze	d: 2022-1	1-16			
Mercury, dissolved		< 0.000010	0.000010 mg/								
LCS (B2K1664-BS	i1)				l: 2022-11-1			1-16			
Mercury, dissolved		0.000477	0.000010 mg/	L 0.000500		95	80-120				
LCS (B2K1664-BS	(2)				l: 2022-11-1			1-16			
Mercury, dissolved		0.000477	0.000010 mg/	L 0.000500		95	80-120				
LCS (B2K1664-BS	3)				l: 2022-11-1			1-16			
Mercury, dissolved		0.000479	0.000010 mg/	L 0.000500		96	80-120				
Duplicate (B2K166	64-DUP2)		ource: 22K1436		l: 2022-11-1	5, Analyze	d: 2022-1	1-16			
Mercury, dissolved		< 0.000010	0.000010 mg/	<u>L</u>	< 0.000010				20		
Matrix Spike (B2K	1664-MS2)		ource: 22K1436	•	l: 2022-11-1			1-16			
Mercury, dissolved		0.000197	0.000010 mg/	L 0.000250	< 0.000010	79	70-130				
General Parameter	rs, Batch B2K1386										
Blank (B2K1386-B	SLK1)			Prepared	l: 2022-11-1	3, Analyze	d: 2022-1	1-13			
Ammonia, Total (as N	١)	< 0.050	0.050 mg/	Ľ							
Blank (B2K1386-B	SLK2)			Prepared	l: 2022-11-1	3, Analyze	d: 2022-1	1-13			
Ammonia, Total (as N	١)	< 0.050	0.050 mg/	L							
Blank (B2K1386-B	BLK3)			Prepared	l: 2022-11-1	3, Analyze	d: 2022-1	1-13			
Ammonia, Total (as N	١)	< 0.050	0.050 mg/	L							
Blank (B2K1386-B	BLK4)			Prepared	l: 2022-11-1	3, Analyze	d: 2022-1	1-13			
Ammonia, Total (as N		< 0.050	0.050 mg/			· ·					
LCS (B2K1386-BS	:1)			Prepared	l: 2022-11-1	3, Analyze	d: 2022-1	1-13			
Ammonia, Total (as N	•	0.950	0.050 mg/			95	90-115				
LCS (B2K1386-BS	52)			Prepared	l: 2022-11-1	3, Analyze	d: 2022-1	1-13			
Ammonia, Total (as N	•	0.955	0.050 mg/			96	90-115				
LCS (B2K1386-BS	3)			Prepared	l: 2022-11-1	3, Analyze	ed: 2022-1	1-13			
Ammonia, Total (as N		0.963	0.050 mg/			96	90-115				

REPORTED TO Regional District of Westside Landfill	f Central Okanaoู	gan			_	VORK ORDER REPORTED		1436 2-11-17	11:06
Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B2K1386, Co	ontinued								
LCS (B2K1386-BS4)			Prepared	I: 2022-11-1	3, Analyze	d: 2022-1	1-13		
Ammonia, Total (as N)	0.953	0.050 mg/L	1.00		95	90-115			
General Parameters, Batch B2K1512									
Blank (B2K1512-BLK1)			Prepared	I: 2022-11-1	4, Analyze	d: 2022-1	1-14		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L	-		-				
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3)	< 1.0 2.2	1.0 mg/L							
Conductivity (EC)		2.0 μS/cm							
Blank (B2K1512-BLK2)			Prepared	I: 2022-11-1	5, Analyze	d: 2022-1	1-15		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3) Conductivity (EC)	< 1.0 < 2.0	1.0 mg/L 2.0 μS/cm							
Conductivity (EC)	~ 2.0	2.0 μ3/011							
Blank (B2K1512-BLK3)			Prepared	I: 2022-11-1	5, Analyze	d: 2022-1	1-15		
Alkalinity, Total (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Phenolphthalein (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Bicarbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Carbonate (as CaCO3)	< 1.0	1.0 mg/L							
Alkalinity, Hydroxide (as CaCO3) Conductivity (EC)	< 1.0 < 2.0	1.0 mg/L 2.0 μS/cm							
Conductivity (EC)	< 2.0	2.0 μ3/011							
LCS (B2K1512-BS1)			Prepared	I: 2022-11-1	4, Analyze	d: 2022-1	1-14		
Alkalinity, Total (as CaCO3)	101	1.0 mg/L	100		101	80-120			
LCS (B2K1512-BS2)			Prepared	I: 2022-11-1	5, Analyze	d: 2022-1	1-15		
Alkalinity, Total (as CaCO3)	101	1.0 mg/L	100		101	80-120			
LCS (B2K1512-BS3)			Prepared	I: 2022-11-1	5 Analyze	d· 2022-1	1-15		
Alkalinity, Total (as CaCO3)	109	1.0 mg/L	100	LULL 11 1	109	80-120	0		
	100	1.5 mg/L							
LCS (B2K1512-BS4)				I: 2022-11-1			1-14		
Conductivity (EC)	1410	2.0 μS/cm	1410		100	95-105			
LCS (B2K1512-BS5)			Prepared	I: 2022-11-1	5, Analyze	d: 2022-1	1-15		
Conductivity (EC)	1440	2.0 µS/cm	1410		102	95-105			
LCS (B2K1512-BS6)			Prepared	I: 2022-11-1	5 Analyze	d· 2022-1	1-15		
Conductivity (EC)	1450	2.0 µS/cm	1410	1. 2022 11 1	103	95-105	1 10		
	1730	2.0 μο/οπ							
Reference (B2K1512-SRM1)				I: 2022-11-1			1-14		
рН	7.02	0.10 pH units	7.01		100	98-102			
Reference (B2K1512-SRM2)			Prepared	I: 2022-11-1	5, Analyze	d: 2022-1	1-15		
pH	7.03	0.10 pH units	7.01		100	98-102			
		·		I: 2022-11-1			1 15		
Reference (B2K1512-SRM3)	7.00	0.40 11 "		i. ZUZZ-11-1			1-10		
рН	7.02	0.10 pH units	7.01		100	98-102			

REPORTED TO Regional District of Central Okanagan

PROJECT Westside Landfill

WORK ORDER

22K1436

REPORTED 2022-11-17 11:06

QC Qualifiers:

BLK Analyte concentration in the Method Blank is above the Reporting Limit (RL).

24 April 2023 19127217-004-R-Rev0

APPENDIX D

Quality Assurance / Quality Control (QA/QC) Results

1.0 METHODS

A Quality Assurance/Quality Control (QA/QC) program was developed and implemented for the purpose of obtaining sampling and analytical data that were interpretable, meaningful and reproducible. This involved using QA/QC measures in both the collection (field) and analysis (laboratory) of samples.

The following sections include a summary of the QA/QC procedures established for the field groundwater sampling program, a review of the resultant data, and the QA/QC measures implemented by the analytical laboratory. The Regional District of Central Okanagan (RDCO) was responsible for following appropriate protocols during the collection and submission of groundwater samples for analysis.

1.1 Field Program

The quality assurance (QA) measures established for the field program included:

- Submission of blind field duplicate samples for a minimum of 10% of the samples analysed. A blind field duplicate samples is a second sample collected from a specific monitoring location that is submitted to the analytical laboratory without identifying the local or expected concentrations to the laboratory.
- The relative percent difference (RPD) between field duplicate sample results was used to assess duplicate sample data. The RPD is a measure of the variability between two outcomes from the same procedure or process and is calculated by:

$$\left| \left(\frac{(x1 - x2)}{average(x1, x2)} \right) \right| x100$$

where x1 is the original sample result and x2 is the field duplicate result.

When the concentration in a sample was less than five times the reported laboratory reporting limit (LRL), the difference factor (DF) was calculated. The DF is also a measure of the variability between two outcomes from the same procedure or process and is calculated by:

$$\left| \left(\frac{(x1 - x2)}{LRL} \right) \right|$$

where x1 is the original sample result and x2 is the field duplicate result.

In 2020, the BC Ministry of Environment updated the BC Environmental Laboratory Manual which contains recommended Data Quality Objectives (DQOs) for laboratory soil and groundwater duplicates (applicable at concentrations greater than five times the LRL). It is recognized that these DQOs are intended for laboratory duplicates and do not include provisions for additional variability in field duplicates. However, these DQOs are considered a conservative screen for assessing the quality of field duplicates. The DQOs applied to this investigation are as follows:

- An RPD of less than 20% was applied for inorganics in groundwater.
- For substances with concentrations less than five times the LRL, the difference factor should be less than two.

1.2 Laboratory

Certificate of analysis (COA) reports were internally reviewed by the analytical laboratory prior to submission. The results of internal checks are provided within the COA reports and were used to assess the reliability, accuracy and reproducibility of the data.

The following DQOs were established for the laboratory analytical program:

- The laboratory that was used has achieved proficiency certification by the Canadian Associated for Laboratory Accreditation Inc. (CALA) for the analyses conducted.
- In addition to Golder's field duplicate samples, each analysis batch included at least one of each of the following: laboratory duplicate sample, method blank, reference material sample, method blank spike and/or matrix spike.

The following criteria were considered acceptable for laboratory QA/QC samples:

- Method blanks should be below the method detection limits used for the specific analysis.
- Laboratory duplicates should fall within the DQOs set by the laboratory.
- Analytical results for the reference materials or spiked blanks or matrix spikes should be within the target specified by the laboratory.

If internal QA/QC issues were encountered, the field samples and internal QA/QC samples were re-analysed.

2.0 RESULTS

2.1 Field Program

Two duplicate groundwater samples were collected during the 2022 monitoring program, one for each sampling event, satisfying the requirement of at least 10% duplicate samples. In May 2022, a duplicate sample was collected from BH4 and in November 2022 a duplicate sample was collected from BH3.

The calculated RPD and DF values for the paired groundwater analyses, provided in Table D-1 in Appendix D, met WSP's DQOs.

2.2 Laboratory

The analytical results were subject to the laboratory's internal quality assurance checks. The results of the laboratory QA analyses are provided with the laboratory COA reports that are available in Appendix C. The results of the laboratory QA program suggest that the laboratory groundwater quality data are accurate, reproducible and can be relied upon.

Table D-1: Quality Assurance and Quality Control Results - Groundwater 2021 Monitoring Report - Westside Landfill West Kelowna, BC

Section Part Part Section Part	Sample Location		BH-4						RI	BH-3			Relative	
Sample De	-				Laboratory		Relative	Difference			Laboratory			Difference
Condence Parameters Condence Parameters Condence Parameters Parameter	•	Units				Mean						Mean		
Somewhare Farmanese Somewhare Some	•			_	Limit		Difference (%)	r dotor ()			Limit			r dotor ()
Southwhy Seven 1900 1900 2000 2			IDA	10					TDA	10			(1-)	
Trand Decomposed Solicion		uS/cm	2050	2050	2.0	2050	0.0%	NΙΛ	021	022	2.0	022	0.1%	NΛ
Albalinsty, 1006 (as CaCO3)	_				2.0	2030	0.076	INA	921	922	2.0		0.170	INA
Albanillay films-browing (ac CaCO)3 mgl 41.0		_			1.0	690	2 404	- NIA	240	241	1.0		0.30/	NA
Mindring Richard (see CacC93) mgl 688 981 10 900 24% NA 340 541 10 341 10 346 348	, , , , , , , , , , , , , , , , , , ,	_					3.4%	INA					0.3%	INA
Assaints						- 2 40/	-					-	-	
Maulani, Physical de (six CalCQ3) mg/s 4-10 4-10 5-10							3.4%	NA					0.3%	NA
Ammening (age N) mg/L	, , ,					-	-	-				-	-	-
Chemide	,					_	-	-				-	-	-
Mirase mg/L 83 83 83 83 83 83 83 8	` '						- 4.40/	- NIA					- F 00/	-
Sulface mg/L 75 75 75 75 75 75 75 7														
Total Mediate	, ,													
Calcium		mg/L	83.1	86.3	1.0	84.7	3.8%	INA	34.1	34.0	1.0	34.1	0.3%	INA
Magnesium			477	470	0.00	470	4.40/	NIA			Ī			
Dissolved Meters									-	-	-	-	-	- I
Hardmark Total (as CaCO3)		mg/L	120	130	0.010	128	3.1%	NA	-	-	-	-	-	
Aluminum		/1	004	0.40	0.500	005	0.007	B.J.A	070	007	0.500	000	0.007	N. A
Antenory mg.L	•						3.0%	NA					0.8%	NA
Assentic mg/L 0.00080 0.000						-	-	-				-	-	-
Bartium	·					-	-					-	-	- 0.4
Beryllium						-								
Bamuth						0.0399	2.5%	NA				0.0105	NA	0.0
Barton	-					-	-	-				-	-	-
Cadmium mg/L 0.000089 by 10.000089 by 1778 0.000018 by 0.000018 by 0.000014 by 0.000013 by 0.000014						-	-	-				-	-	-
Calcium mg/L 172 178 0.20 175 3.4% NA 97.5 95.8 0.20 96.7 1.8% NA Chromium mg/L 0.00050 0.														
Chromium														
Cobalt mg/L 0.00131 0.00131 0.00101 0.00159 NA 0.00151 0.00011 0.00010 0.00101 NA 0.0 Copper mg/L 0.00156 0.00162 0.00040 0.00159 NA 0.15 0.00090 0.00088 0.00040 0.001 Lead mg/L <0.00020 <						1/5	3.4%	NA				96.7	1.8%	NA
Copper mg/L 0.00168 0.00162 0.00040 0.0010 0.0010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.00020 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>								-				-	-	-
Inche														
Lead mg/L < 0.00020 < 0.00020 0.00020 0.00020 0.00020 < 0.00020 0.00020						0.00159	NA NA	0.15				0.00089	NA	0.0
Lithium mg/L 0.0346 0.0344 0.0010 0.0345 0.8% NA 0.0165 0.0156 0.0010 0.0161 5.6% NA Magnesium mg/L 119 122 0.010 121 2.5% NA 30.7 31.0 0.0002 0.00039 NA 0.3 Marcury mg/L <0.000010						-	-	-				-	-	-
Magnesium mg/L 119 122 0.010 121 2.5% NA 30.7 31.0 0.010 30.9 1.0% NA Manganese mg/L 0.366 0.370 0.00020 0.00036 0.00020 0.00039 NA 0.3 Mercury mg/L 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.00001 0.000010 0.00001 0.00001 0.00001 0.00001 0.000010 0.00001 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td></td<>						-	-					-	-	
Manganese mg/L mg/L vol. 0.365 0.370 vol. 0.0020 vol. 0.368 vol. 0.368 vol. 0.0001 vol. 0.000010 vol. 0.00010 vol.														
Mercury mg/L < 0.000010 < 0.000010 0.000010 0.000010 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.00000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000 < 0.000000	_													
Molybdenum mg/L ng/L mg/L 0.00529 ng/L 0.00522 ng/L 0.0010 ng/L 0.00528 ng/L 1.3% ng/L NA ng/L 0.00529 ng/L 0.00522 ng/L 0.0010 ng/L 0.00423 ng/L 0.0010 ng/L 0.00424 ng/L 0.5% ng/L NA ng/L Phosphorus mg/L 0.050 ng/L 0.050 ng/	_					0.368	1.4%	NA				0.00039	NA	0.3
Nickel mg/L 0.0163 0.0163 0.0040 0.0163 0.006 NA 0.00107 0.00103 0.0040 0.00105 NA NA NA NA NA NA NA N	-					-							-	-
Phosphorus														
Potassium						0.0163	0.0%	NA						
Selenium	·						-							
Silicon mg/L mg/L mg/L mg/L 11.9 mg/L mg/L 11.7 mg/L mg/L 11.0 mg/L mg/L 11.8 mg/L mg/L 11.8 mg/L mg/L mg/L 11.9 mg/L mg/L mg/L 11.9 mg/L mg/L mg/L 11.9 mg/L mg/L mg/L 11.6 mg/L 11.5 mg/L NA 0.07 Tellurium mg/L 0.000020 0.00050 0.00020 0.00020 0.00020 NA 0.0 0.000020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.000020						5.40	0.2%	NA						
Silver mg/L < 0.000050 < 0.000050 0.000050 < 0.000050 < 0.000050 0.000050 Sodium mg/L 99.0 99.8 0.10 99.4 0.8% NA 52.2 51.8 0.10 52.0 0.8% NA Strontium mg/L 2.13 2.12 0.0010 2.13 0.5% NA 0.729 0.713 0.0010 0.721 2.2% NA Sulfur mg/L 31.9 32.1 3.0 32.0 0.6% NA 11.6 11.4 3.0 11.5 NA 0.07 Tellurium mg/L <0.00050														
Sodium mg/L 99.0 99.8 0.10 99.4 0.8% NA 52.2 51.8 0.10 52.0 0.8% NA Strontium mg/L 2.13 2.12 0.0010 2.13 0.5% NA 0.729 0.713 0.0010 0.721 2.2% NA Sulfur mg/L 31.9 32.1 3.0 32.0 0.6% NA 11.6 11.4 3.0 11.5 NA 0.07 Tellurium mg/L 0.000020 0.00050 - - - - 0.00050 0.00050 - - - - 0.00050 0.00050 - - - - 0.00050 0.00050 0.07 - - - 0.00050 0.00050 0.007 - - - - 0.00050 0.00050 0.00050 0.00002 0.00002 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0						11.8	1.7%	NA				11.5	1.7%	NA
Strontium mg/L mg/L mg/L 2.13 mg/L 2.12 mg/L 0.0010 mg/L 2.13 mg/L 0.0010 mg/L 0.721 mg/L 0.0010 mg/L 0.721 mg/L 0.001 mg/L 0.001 mg/L 0.00050 mg/L 0.00010 mg/L 0.00050 mg/L 0.00050 mg/L 0.00													-	-
Sulfur mg/L 31.9 32.1 3.0 32.0 0.6% NA 11.6 11.4 3.0 11.5 NA 0.07 Tellurium mg/L <0.00050														
Tellurium mg/L < 0.00050 < 0.00050 0.00050														
Thallium mg/L 0.000020 0.000021 0.000020 NA 0.0 <0.000020 <0.000020 0.000020 - - Thorium mg/L <0.00010						32.0	0.6%						NA	0.07
Thorium mg/L mg/L <0.00010 cd <0.00010 cd						-	-						-	- I
Tin mg/L <0.00020 <0.00020 0.00020 - - - <0.00020 <0.00020 0.00020 - - - <0.00020 <0.00020 0.00020 - - - - <0.00020 <0.00020 0.00020 - - - - - <0.00050 <0.00050 - - - - - <0.0050 <0.0050 -							NA						-	-
Titanium mg/L rungsten < 0.0050 mg/L rungsten < 0.0050 mg/L rungsten < 0.0010 mg/L rungsten < 0.00						-	-	-					-	-
Tungsten mg/L < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 0.0010 < 0.0010 0.0010 < 0.0010 0.0010 < 0.0010 0.0010						-	-	-				-	-	-
Uranium mg/L 0.0265 0.0280 0.00002 0.0273 5.5% NA 0.00631 0.00634 0.00002 0.00633 0.5% NA Vanadium mg/L 0.0031 0.0031 0.0010 0.0031 NA 0.0 <0.0050						-	-	-				-	-	- I
Vanadium mg/L 0.0031 0.0031 0.0010 0.0031 NA 0.0 <0.0050 <0.0050 0.0010 - - - Zinc mg/L <0.0040	_					-						-	- 	-
Zinc mg/L <0.0040 <0.0040 0.0040 - - - <0.0040 <0.0040 0.0040 - - - Zirconium mg/L 0.00052 0.00051 0.00010 0.00052 1.9% NA <0.00010												0.00633	0.5%	NA
Zirconium mg/L 0.00052 0.00051 0.00010 0.00052 1.9% NA <0.00010 <0.00010 0.00010						0.0031	NA	0.0				-	-	- I
						-	-	-				-	-	- I
		mg/L	0.00052	0.00051	0.00010	0.00052	1.9%	NA	<0.00010	<0.00010	0.00010	-	-	-

Laboratory Reporting Limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample. Mean indicates the mean or average value calculated of a field duplicate pair (the FDA and the FD).

Relative Percent Difference is calculated when the mean value is greater than five times the laboratory reporting limit; Golder's internal QA/QC target is less than 20%. Difference Factor is calculated when the mean value is less than five times the laboratory reporting limit; Golder's internal QA/QC target is less than 2.

NA = Not applicable

FDA = Field duplicate available

FD = Field duplicate

QA/QC = Quality assurance/quality control

< 0.0050 indicates concentration is less than the laboratory reporting limit

40% indicates the parameter analysed exceeds Golder's internal QA/QC targets; refer to report.

